
iCAT : An Interactive Customizable
Anonymization Tool

Momen Oqaily1,Yosr Jarraya2, Mengyuan Zhang2, Lingyu Wang1, Makan
Pourzandi2 and Mourad Debbabi1

1 Concordia Institute for Information Systems Engineering, Concordia University,
Montreal, QC, Canada

2 Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada

Abstract. Today’s data owners usually resort to data anonymization
tools to ease their privacy and confidentiality concerns. However, those
tools are typically ready-made and inflexible, leaving a gap both between
the data owner and data users’ requirements, and between those require-
ments and a tool’s anonymization capabilities. In this paper, we pro-
pose an interactive customizable anonymization tool, namely iCAT, to
bridge the aforementioned gaps. To this end, we first define the novel con-
cept of anonymization space to model all combinations of per-attribute
anonymization primitives based on their levels of privacy and utility. Sec-
ond, we leverage NLP and ontology modeling to provide an automated
way to translate data owners and data users’ textual requirements into
appropriate anonymization primitives. Finally, we implement iCAT and
evaluate its efficiency and effectiveness with both real and synthetic net-
work data, and we assess the usability through a user-based study in-
volving participants from industry and research laboratories. Our exper-
iments show an effectiveness of about 96.5% for data owners and 92.6%
for data users.

1 Introduction

Nowadays, network data has become a highly valuable resource for different
stakeholders as its analysis can serve many use-cases. However, data owners are
generally reluctant to share their data due to the risk of information disclosure
and potentially staggering financial fines imposed by privacy regulations such as
the European General Data Protection Regulation (GDPR) [?]. This reluctance
is worsened with the increase in the number of the publicly announced data
breach and misuse incidents3 4. To this end, data anonymization is a well-known
solution for easing data owners’ concerns. However, the effectiveness of sharing
anonymized data critically depends on data owners to make the right choice of
anonymization approach, and to apply the approach properly to achieve the right
trade-off between utility and privacy. However, this can be a difficult task since

3 https://www.wsj.com/articles/google-exposed-user-data-feared-repercussions-of-
disclosing-to-public-1539017194

4 https://www.techworld.com/security/uks-most-infamous-data-breaches-3604586/



most data owners likely lack a systematic understanding of the search space (i.e.,
all possible anonymization approaches). To make things worse, most existing
anonymization tools only provide very limited choices, and manually translating
privacy/utility requirements into the tools’ anonymization capabilities is usually
tedious and error-prone, as demonstrated in the following.

Motivating Example. Figure 1 depicts how three data users translate their
different analysis needs into utility requirements (left), while the data owner
translates his/her levels of trust for those users into different privacy require-
ments (right). Four existing anonymization tools (top-center) are applied to the
four data attributes (middle-center) to show the limitations (bottom-center).

Bob: University Collaborator

Charlie: Security Administrator

Charlie is distrusted

Privacy Req. 3: 

Hashing, Truncation, 

Clustering

Alice is trusted

Privacy Req. 1: Prefix 

preserving,  Seq. numb

Random

Hashing

Prefix-Pres

Const-

Shifting

No-

Anon

Trunc

Clust

Hiding

Hashing

Permut

Partial Hiding

Hide

No-

Anon

Data Owner
Requirements satisfaction  

Privacy

Attributes

Existing tools:

Bob: is semi-trusted

Privacy Req. 2: 

Hashing, Shifting

Username

IP

Port

Canine [15]Anon[6] Flaim [21] CoralRef [17]

Analysis: ML time series

Utility Req. 2: 

Timestamp, IP 

   Analysis: Network security

Utility Req. 3: Username, 

IP, Port

Timestamp

Seq. Numb
Rand-

Shifting

Alice: External Auditor

Analysis: Reachability 

verification

Utility Req. 1: 

Timestamp, IP subnet

Fig. 1: The motivating example

– The existing anonymization approach assumes that each data user (e.g. Al-
ice) can easily understand what is needed for his/her analysis (e.g., verifying
network reachability) and translate that need into concrete utility require-
ments (e.g., the timestamps and the subnet relationship of IPs need to be
preserved). This might not be the case in practice (as confirmed by our
user-based experiments in Section 5), which could lead to many iterations
between the data owner and the data user before finding the right answer.

– It is also expected that the data owner can easily understand his/her level of
trust for each data user and translate it into concrete privacy requirements
(e.g., Alice can only be given prefix-preserving and sequentially numbered
data), and he/she is willing to understand each user’s utility requirement
(since the user is not involved in selecting the tool), and reconcile them with
his/her privacy requirements. However, real-world data owners are usually
not so considerate and might simply go with whatever provided by some
handy anonymization tools.

– As shown in the middle of Figure 1, existing tools generally only implement
a small set of anonymization primitives suitable for a subset of the data

2



attributes. Theoretically, the data owner can resort to a collection of such
tools to cover all attributes. However, practically, this could be a difficult task
since most tools do not offer the needed customization, e.g., which attributes
to anonymize and to what privacy/utility levels, and the selected tools may
not be compatible with each other and such incompatibility can potentially
result in erroneous or inconsistent results.

In this paper, we propose an interactive customizable anonymization tool,
namely iCAT, to address the aforementioned challenges. Intuitively, iCAT is
designed to cover the entire “space” shown in the middle of Figure 1 (instead
of a few points covered by each existing tool), and to help both the data owner
and data users by automating their requirements translation. Specifically, we
first propose the novel concept of anonymization space, which models all pos-
sible combinations of existing anonymization primitives (which are applicable
to the given data attributes) as a lattice based on their relationships in terms
of privacy and utility. Second, as an application of the anonymization space
concept, the privacy and utility requirements are jointly enforced through a
simple access control mechanism. Third, we develop an ontology-driven Natu-
ral Language Processing (NLP) approach to automatically translate the textual
requirements from both parties into combinations of anonymization primitives
inside the anonymization space. Therefore, our main contributions are threefold:

1. To the best of our knowledge, our notion of anonymization space is the first
systematic model of existing anonymization primitives that characterizes
their capabilities in terms of privacy and utility, as well as their relation-
ships. This model provides data owners with clearer understanding of pos-
sible anonymization choices, and it also, for the first time, allows the data
users to be actively involved in the decision process.

2. To realize the potential of anonymization space, we design and implement an
automated tool, iCAT, by leveraging existing anonymization primitives and
a popular NLP engine [?]. In contrast to most of the existing anonymiza-
tion tools, iCAT provides more flexibility (by allowing access to the en-
tire anonymization space) and better usability (by automating requirements
translation). The interactive nature of iCAT also implies the potential of a
new paradigm for providing data anonymization as a service.

3. We evaluate the effectiveness and efficiency of iCAT using both synthetic
and real data, and assess its usability through a user-based study involving
participants from both industry and academia. Our results demonstrate the
effectiveness and efficiency of our solution.

The remainder of this paper is organized as follows. Section 2 defines our
anonymization space model and describes the privacy/utility access control. In
Section 3, we describe the requirements translation process using NLP and ontol-
ogy modeling. Section 4 details the implementation. Section 5 gives experimental
results. Section 6 provides more discussions. Section 7 reviews related works and
Section 8 concludes this paper.

3



2 Anonymization Space

In this section, we first define our threat model, then we review existing anonymiza-
tion primitives and finally we define the anonymization space model and priva-
cy/utility access control mechanism.

2.1 Threat Model

We define the parties involved in the data anonymization process and their trust
relationships as the following :

– The data owner, who has useful datasets that can be used for different pur-
poses, is interested in protecting the privacy of his/her data to avoid any
data misuse. The data owner has different trust levels of the data users,
which will determine the amount of information that he/she is willing to
outsource.

– The data users, who have different use-cases of the data (e.g., auditing,
research purposes, etc.), are interested in having the maximum data utility,
in order to achieve valid results. The data users trust the data owners and
are willing to share their use-cases with them.

In scope threats: We assume that both data owner and user will follow the
procedure to express their requirements, while the latter is interested in obtaining
output with higher utility if the tool provides him/her such an opportunity.

Out of scope threats: Our tool is not designed to mitigate any weakness or
vulnerability of the underlying anonymization primitives (e.g., frequency anal-
ysis, data injection attacks, or data linkage attacks). Whereas, those primitives
are used as a black box in our data anonymization module and can be replaced
by other, better primitives when available. Moreover, we consider the failure in
requirement translation by the NLP engine out of the scope.

2.2 Anonymization Primitives

There exist many data anonymization primitives in the literature even though
most existing tools only support a limited number of those primitives (a detailed
review of related work is provided in Section 7). To facilitate further discussions,
Table 1 provides a list of common anonymization primitives, examples of plain
data, and the corresponding anonymized data obtained using the primitives 5.

2.3 Lattices-based Anonymization Space

Following our motivating example shown in Figure 1, suppose the data owner is
dissatisfied with those existing anonymization tools. Instead, he/she would like
to apply the anonymization primitives given in Table 1. Obviously, he/she would
find himself/herself facing a plethora of choices as follows:

5 This list is not meant to be exhaustive, and our model and methodology can be
extended to include other anonymization primitives

4



Primitive Plain Data Example Corresponding Anonymized Data

Prefix-preserving IP1:12.8.3.4 ; IP2:12.8.3.5 IP1:51.22.7.33 ; IP1:51.22.7.19
Truncation IP1:12.8.3.4 ; IP2:12.8.3.5 IP1:12.8.X.X ; IP2:12.8.X.X
Const. Substitution Version:2.0.1 Version: VERSION
Const. Shifting Time1: 2019-03-31; Time2: 2019-03-30 Time1: 2022-03-31; Time2: 2022-03-30
Random Shifting Time1: 2019-03-31; Time2: 2019-03-30 Time1: 2003-03-31; Time2: 2015-03-30
Sequ. Numbering Time1: 2019-03-31; Time2: 2019-03-30 Time1: T1; Time2: T2
Partial Hiding Time1: 2019-03-31; Time2: 2019-03-30 Time1: 2019-X-X; Time2: 2019-X-X
Hashing ID:40018833 ID: H3%s2*D9
Clustering Port1:225; Port2: 277 Port1:200; Port2: 277
Permutation Port1:225; Port2: 277 Port1:277; Port2: 225
Randomization Port1: 225; Port2: 277 Port1:423; Port2: 29

Table 1: Anonymization Primitives

– First, each data attribute may be anonymized using a different collection
of the anonymization primitives (e.g., IPs may work with prefix preserving,
truncation, hashing, etc., while IDs with clustering, hashing, etc., and both
can be either completely hidden or plainly given with no anonymization).

– Second, different anonymization primitives applied to an attribute may yield
different levels of, and sometimes incomparable, privacy and utility (e.g.,
for IPs, hashing provides more privacy/less utility than prefix preserving,
whereas they are both incomparable to truncation or randomization).

– Finally, the data owner and data users’ requirements typically involve mul-
tiple attributes, as demonstrated in Figure 1, and sometime in a complex
fashion, e.g., the data owner might say “I can only give you the data with
the IPs hashed, or with the IDs clustered, but not both”, while a data user
asks “I know I may not get the data with the IPs truncated and the IDs
hashed, but what would be my next best option?”

The above discussions clearly demonstrate a need for a systematic way to
represent and organize all the possible choices of anonymization primitives that
can be applied to a given dataset. For this purpose, we propose a novel concept,
namely anonymization space, by considering each data attribute as a dimen-
sion, and each combination of anonymization primitives that can cover all the
attributes as a point inside the anonymization space. Considering the fact that
anonymization primitives are not always comparable in terms of privacy/util-
ity, and inspired by the Denning’s Axioms [?, ?], we consider the collection of
anonymization primitives applicable to each attribute to form a lattice based on
their relationships in terms of privacy and utility, and the product of all those
lattices (which is also a lattice by lattice theory [?]) represents the anonymization
space. The following more formally defines those concepts.

Definition 1. (Anonymization Space) Given A = 〈a1, a2, . . . , an〉 as a se-
quence of attributes to be anonymized, and given Fi = {f1, f2, . . . , fm}(1 ≤ i ≤
n) as the set of anonymization primitives that are applicable to ai, we define

– the attribute lattice Li(1 ≤ i ≤ n) as a lattice 〈Fi,≺〉 where for any f1, f2 ∈
Fi, we have f1 ≺ f2 iff f1 provides better utility and more stringent privacy
than f2 when both are applied to ai, and

– the anonymization space corresponding to A as
∏n

i=1 Li.

5



Example 1. Fig. 2.A (top) shows some examples of anonymization primitives
and Fig. 2.B shows their applicability (using their indices) to six attributes.
Fig. 2.C shows the six attribute lattices. Due to space limitations, we omit the
anonymization space (which would have a size of 20, 736).

No 

Anon

PP
Trun

c
Rand

Hidin

g

Hash

1) IP Addresses lattice

No 

Anon

Part.

Hidi
ClustRand

Hidin

g

2) Integers\Decimals lattice

Cons.

Sub.

No 

Anon

Clust.

Hidin

g

3) Identifiers lattice

Hash

No 

Anon

Cons.

Shif.

Part.

Hidi
Rand

Hidin

g

Seq.

Num.

4) Time\Dates lattice

No 

Anon

Part.

Hidi
ClustRand

Hidin

g

5) Strings lattice

Cons.

Sub.

No 

Anon

Cons.

Shif.

Hidin

g

Cons.

Sub.

6) Constants lattice

No 

Anon

Partial 

Hiding
Clust Rando Hiding

Prefix-

preser

Hashi

ng
Trunc

Cons 

shifting

Seq 

num
Permut

Const 

subs
1 2 3 4 5 6 7 8 9 10 11 12

IP

Addr

ess

6

8

11

2

1 ID

9

12

6

1

12

Int/

Dec

7

9

11

3

1

12

Time

Dates

5

7

11

4

1

12

Strin

gs

7

9

11

3

1

12

Const

ants

5

12

1
4

A) Network data anonymization primitives 

B) Attributes and their corresponding anonymization primitives 

C) Per-attribute lattices

Fig. 2: An example anonymization space A) Examples of anonymization prim-
itives with their indices, B) Examples of data attributes and their applicable
anonymization primitives and C) The attribute lattices.

By providing a clearer picture of the anonymization primitives and their
relationships, the anonymization space concept may have many use cases. For
our purpose, we show how the concept can be used to jointly enforce the privacy
and utility requirements through a simple access control mechanism (inspired
by the Bell–LaPadula (BLP) model [?]), while allowing the data user to be
actively involved in the anonymization process. Specifically, if we consider each
point (which is a collection of anonymization primitives) in the anonymization
space as a privacy/utility level, then the data owner’s privacy requirement can
be mapped to such a level (this mapping will be automated in Section 3), and
everything above this level will also satisfy the privacy requirement since by
definition it will yield more privacy, namely the privacy-up rule. Conversely, a
data user’s requirement can also be mapped to a level below which any level
would also satisfy the utility requirement, namely the utility-down rule. This is
more formally stated in Definition 2.

Definition 2. (Privacy/Utility Access Control) Given the data attributes
A, the corresponding anonymization space AS =

∏n
i=1 Li, and the privacy re-

quirement Lp ∈ AS and utility requirement Lu ∈ AS (specified by the data owner
and data user, respectively), any L ∈ AS will satisfy both requirements iff Lp ≺ L
(privacy up) and L ≺ Lu (utility down) are both true.

Example 2. Figure 3 shows an example of anonymization space corresponding
to the IP and ID attributes. The data owner requires Ha (hashing) for IPs and

6



NA (no anonymization) for IDs. By the privacy-up rule, all levels inside the
upper shaded area will also satisfy privacy requirements. The following discusses
two data users’ utility requirements.

<Ha,Hi>

<Ha,Ha>

<Ha,NA>

<Ha,Cl>

<Hi,Hi>

<Hi,Ha>
<Hi,Cl>

<Hi,NA>

<PP,Hi>

<PP,Ha>

<PP,NA>
<PP,Cl>

<NA,Hi>

<NA,Ha>

<NA,NA>

<NA,Cl>

<Tr,Hi>

<Tr,Ha>

<Tr,NA>

<Tr,Cl>

Tags Map

HidingHi

HashingHa

Prefix-preservingPP

TruncationTr

ClusteringCl

No-AnonymizationNA

Data owner’s requirements: Hashed IPs, Plain ID

Alice’s requirements: IPs subnet

Charlie’s requirements: One to one mapping

The Intersection

Fig. 3: An example of anonymization space for attributes IP and ID, and the
privacy/utility access control for Alice and Charlie

1. Charlie requires to preserve the one-to-one mapping for both IPs and IDs.
Following the utility-down rule, the dark gray area highlights all the levels
that satisfy Charlie’s utility requirements. Also, the area with crossing lines
includes all levels that satisfy both the privacy and utility requirements, i.e.,
〈Ha, Ha〉 and 〈Ha, Na〉.

2. Alice requires to preserve the IP subnets. The light gray area highlights all
the levels that satisfy Alice’s utility requirement. Since there is no inter-
section between the upper shaded area and the light gray area, no level
can satisfy both the privacy-up and utility-down rules, which means no
anonymization primitive can satisfy both the privacy and utility require-
ments for Alice. However, the anonymization space makes it easy to choose
an alternative level that will satisfy the privacy requirement while providing
the best possible utility to Alice, e.g., 〈Ha,Na〉.

3 Requirements Translation

To ease the burden on both data owners and data users, iCAT accepts re-
quirements expressed in a natural language (English in our case) and translate
them into anonymization primitives. In this section, we first discuss requirements
translation using NLP and ontology modeling, and then explain ambiguity res-
olution.

Requirements Processing using NLP. The first step in translating the data
owner and data user’s requirements into combinations of anonymization primi-
tives in the anonymization space is to understand them linguistically. For this
purpose, iCAT leverages the Stanford Parser CoreNLP [?], which provides a set
of natural language processing tools. Initially, the CoreNLP parser separates the
English requirements into different sentences. Since CoreNLP can mark up the

7



structure of sentences in terms of phrases and syntactic dependencies and indi-
cate which noun phrases refer to the same entities, we can obtain the sentence
representing each requirement. After that, the Part-Of-Speech Tagger (POS Tag-
ger) tool from CoreNLP is leveraged to filter and prepare the requirements for
the ontology modeling step (c.f. Section 3). The POS tagger returns the sen-
tences’ words as a pair consisting of tokens and their part of speech tags (the
linguistic type of the words, i.e., noun, verb, adjective, etc.). After that, unre-
lated words (i.e., pronouns, symbols, adverbs, etc.) are filtered out from each
requirement, which will speed up the requirements translation.

Example 3. Figure 4 shows how a data owner’s requirement “Data stored based
on time occurrence” is processed to obtain the attribute data type timestamp
and the associated anonymization primitive shifting.

Requirment1: 

data sorted based 

on the occurrence 

time  

 Step1:

 Requirement Parsing

Token Dependency
Data Noun

sorted Verb
based Verb

on Preposition
the Article

occurrence Noun
time Noun

Token Dependency
Data Noun

sorted Verb
based Verb

on Preposition
the Article

occurrence Noun
time Noun

Anonym

Method
Shifting

Data Type Timestamp
Anonym

Method

Data Type Timestamp

Shifting

Seq. Num

Type Token

Timestamp
time

Type and Method Ontologies

…

Method Token
SortedSequntial 

Numbering ...
SortedConstant 

shifting ...

 Step2:

Requirement Filtering

 Step3:

Requirement

Mapping

Step4:

Ambiguity Solving

Parse user 

requirement through  

NLP 

Remove irrelevant 

tokens

Map the requirement to the 

related attribute type and 

anonymization primitive 

Solve any resulted ambiguity 

by communicating with user

Fig. 4: Example showing the requirement translation process

Ontology Modeling. We use ontology modeling to define the relationship be-
tween requirements and data attributes/anonymization primitives as follows.
Ontology Learning We first define the concepts for data owner and user as:
i) anony-methods; ii) method-func; iii) attribute-types; iv) attribute-synon.
Based on our definitions, the instances of the anony-methods are the existing
anonymization primitives and the method-func instances are manually created
based on the functionality and unique properties that each anonymization prim-
itive can achieve. Moreover, the instances of the attribute-type concept are the
given attributes types and the attribute-synon instances are manually created
based on the use/synonymous of each attribute type. After that, we find the
relationships between those concepts’ instances by defining relations between
the anony-methods and the method-func concepts. Also, by defining relations
between the attribute-types and the attribute-synon instances. For example,
Figure 5 shows the type-ontologies related to the time-stamp attribute type and
the method-ontology related to the constant shifting anonymization primitive.
After that, we store the resulted ontologies into two separate tables, namely the
type-ontology and the method-ontology.
Requirements Mapping We apply the learned ontologies to the processed and
filtered requirements from the NLP in order to find the data attributes and the
anonymization primitives corresponding to the user’s requirements. This is done

8



Timesta

mp
Calculates

Has

Finds

Measure
Calculates

Consists

 from

Capture

Define

Sequ

ences

Wind

ow
Time

-out

Idle

Roun

d 

Trip

Initia

tion

Time

Hour

Min

Sec

Const. 

Shifting
Preserves

Maintian
Define

 how

Maintain

Preserves

Consists

from

IS

Finds

Diffe

rence

Dura

tion

Far

Dista

nce

Sequ

ences

one-

to-

one

Disti

nct

Flow

A) Excerpt of the Timestamp type-ontology B) Excerpt of the Constant-Shifting method-ontology

Delay

Fig. 5: Ontologies of timestamp and constant shifting.

by matching every tokenized word in the processed requirement with the type
and the method ontologies tables shown in Figure 4 as follows.
1. For each tokenized word in each annotated requirement, the tokenized word

is matched first with the type ontology and then with the method ontology.
2. If the tokenized words are mapped to only one record from the type ontology

table and one record from the method ontology table, then the requirement
is translated properly, and the mapper will pass to the second requirement.

3. If none of the tokenized words match any record in both type and method
ontologies tables, the word is dropped from the sentence annotations table.

4. If the user tokenized words fail to map to any record from the type and/or
method ontologies or if the tokenized words have multiple matching, then
the mapper will return an error message to the user reporting this issue and
forward this conflict to the ambiguity solving process as discussed next.

Ambiguity Resolution. Ambiguity can occur for several reasons. We discuss
how iCAT handles it as follows.
– The sentences entered by the user are mistakenly parsed at requirement

parsing step (because of typos or NLP failures), which is not due to iCAT.
– The same requirements can be translated into different anonymization meth-

ods. For example, consider the following requirement; Req-1: each IP address
must be mapped to one IP address. Both IP hashing and prefix-preserving
can satisfy this requirement. In this case, the ambiguity solver of iCAT will
display a small multi-choice menu to the user, such that this ambiguity can
be resolved interactively.

– The same requirement can be expressed in different ways; For example, the
sequence of events is mandatory versus the order of logged records must be
preserved. This issue is discussed in Section 6.

– The data user’s requirement is mapped to anonymization primitives that
do not satisfy the data owner’s requirement. In this case, iCAT suggests
alternative anonymization primitives that offer the closest utility level to
what is specified by the data owner.

4 Implementation

Figure 6 illustrates the flowchart (left) and main architecture (right) of iCAT,
as detailed below.

9



 Step1: Raw data loading 

and pre-processing

Step 2: Data attributes’ 

types identification, and 

anonymization space 

generation

Step3: Data owner’s 

requirements processing 

using NLP into a privacy-

level for the data user

Step4: Data user’s 

requirement processing 

using NLP into utility-

level

Step 5: Determination of 

the per-attribute 

anonymization primitives

Requirements 

Parser

Ambiguity 

Solver

Requirements Interpreter (RI) 

Data

Processing

Data

Filtering

Data filtering and Processing  (DFP)

Method/Type 

Ontology (MTO)

File storage and Databases 

Access Control

(ACDB)

Data Anonymizer

 (DA)

Anonymization

Mapper

Anonymization

Primitives

File Storage

(FS)

Requirements

Mapper

iCAT Manager 

Identity Access 

Management and 

Permission Granter

I/O Manager
Interactive 

Communicator

Anonymization 

Space Builder

(ASB)

Anonymization 

Controller 

(AC)

Anonymization Space

 Manager (ASM)

A) iCAT Flowchart Diagram B) iCAT System Architecture

Step 6: Data anonymization 

meeting all requirements

Fig. 6: Flowchart of iCAT.

iCAT Flowchart. As shown in Figure 6.A, raw data is loaded into iCAT and
pre-processed by the data owner where he can filter the attributes and clean the
records if necessary (step 1). Then, the data attribute types are identified and
used to build the anonymization space lattice and generate the privacy/utility
access control model (step 2). Third, the data owner interacts with iCAT to
input his privacy requirements (in natural languages) for a data user (step 3).
These requirements are parsed and mapped to a privacy-level in the anonymiza-
tion space. After that, the data user inputs the utility requirements which are
also parsed and mapped to a utility-level in the anonymization space (step 4).
Based on the privacy and utility levels, iCAT identifies the right combination of
anonymization primitives (step 5). Finally, the data is anonymized and returned
to the data user (step 6).

iCAT Architecture. We provide a brief description of the main architecture
of iCAT, as shown in Figure 6.B, while leaving more details to the Appendix
due to space limitations. All the modules of iCAT are implemented in Java.
The Data Loading and Processing (DLP) module is used to load the data, and
enables filtering and cleansing operations. These operations allow performing
statistical disclosure control for balancing privacy risks and data utility. The Re-
quirements Interpreter (RI) module translates the data owner’s and data user’s
requirements into data attributes types and anonymization primitives. The iCAT
Manager module associates the data user identity with the privacy-level speci-
fied by the data owner and interacts with the data owner or data user. The I/O
Manager module is responsible for configuring the data source and the loading
the actual data. The Anonymization Space Manager module is for generating the
anonymization space and implementing the access control mechanism. Finally,
the Data Anonymizer module is for anonymizing the data and it is designed in
a modular way to easily accommodate new anonymization primitives.

5 Experiments

In this section, we evaluate the effectiveness and usability of iCAT through a
user-based study with participants from both industry and academia working
on data analysis. Also, we evaluate the efficiency of iCAT using real data.

10



5.1 Experimental Settings

Datasets selection. We used four datasets in our experiments as shown in
Table 2. The first is the Google cluster dataset [?], i.e., traces from requests pro-
cessed by Google cluster management system. The second is cloud logs collected
from different OpenStack Neutron services. The third dataset is a database dump
of the OpenStack Nova service. The fourth dataset is the BHP-OBS machine
learning dataset [?]. We select the aforementioned datasets for the following rea-
sons: i) The privacy constraints and requirements are already known for datasets
from the industrial collaborator; ii) The public datasets are widely used in re-
search labs and the structure and usability of the data (as implementations exist
to validate) could be easily identified by the researcher participants.

Datasets Format # of Records # of Attributes # of requirements
DS1: Google cluster CSV 2,000 9 56

DS2: OpenStack Neutron log 2,000 18 62
DS3: OpenStack Nova DB 2,000 22 44

DS4: BHPOBS ML text 1,027 22 43

Table 2: Different datasets used in evaluating iCAT and their statistics

Participants. We have two types of participants, i.e., data owner participants
and data user participants. To solicit participants, we have placed an advertise-
ment on the university campus and also sent it to our industrial collaborators.
The on-campus flyer requires that: i) participants should be able to pose clear
requirements (e.g., how to use the data and what properties need to be pre-
served). ii) participants should be able to evaluate the usefulness and usability
of the data after the experiments. The request sent to research collaborators
indicates that: i) participants should be able to write their institutional privacy
constraints and requirements that govern data sharing; ii) participants should
be able to verify whether the final anonymized output of the data meets those
requirements/constraints. As a result, we have recruited nine researchers from
different research labs, and 14 participants from four industrial organizations.
Table 3 summarizes the participants’ experience level in percentage, where we
categorize them based on their educational level and industrial experience.

Category Research Industry
Expertise Level M.Sc. Ph.D. Junior Senior
Participants percentage 30.4% 8.6% 43.4% 17.6%
Overall percentage 39% 71%

Table 3: Distribution of participants over the user experience levels

Procedures. We divided our experiments into four main data anonymization
operations based on the used datasets and asked the participants to select one
of them corresponding to their domain. After that, the participants had to input
their requirements and interact with iCAT until the anonymization operation
finishes. Finally, we asked the participants to fill a post-experiment questionnaire
to report the correctness of data usefulness and the privacy constraints. Note
that, we recorded the requirements entered by the participants to evaluate the
effectiveness of iCAT as it will be explained next.

11



5.2 Effectiveness

The main goal of this experiment is to evaluate the quality of the requirements
translation. Since this is a multi-class problem, we evaluate the effectiveness of
our system as the percentage of the requirements that were correctly translated
by iCAT. To this end, we manually investigated the recorded user’s requirements
and categorized the failures as follows: i) the privacy leakage/utility loss caused
by both data owners/users through mistakenly choosing anonymized methods.
ii) the failures caused by iCAT misrecognizing either the data owners or the data
user’s requirements. Figure 7.A and Figure 7.B demonstrate the effectiveness of
the translation process from both data owner and user sides. Figure 7.C shows
a detailed analysis of the failed requirements.

Results. The overall effectiveness of translating data owners’ requirements is
relatively high as shown in Figure 7.A; the lowest percentage of correctly trans-
lated results is 87.5%. This is justified as the ambiguity solver implemented by
iCAT reduces the error rate through interactive communication with the users,
where they can directly intervene in the case of uncertain requirements. On the
other hand, the two main reasons of translation’s failures are: i) the correctness
of the ontology modeling; ii) NLP fails to translate when the user’s input con-
tains typos. The percentage of failures for both Ontology and NLP are presented
in Figure 7.A in white and gray patterns. By comparing through the dataset,
we also observe that the number of attributes affects the success rate of the
requirements translation in the opposite manner. Hence, users need to express
their requirements more precisely to differentiate between different attributes.

Similarly to the previous experiment, the ambiguity solver contributes to
the high accuracy in the translation of data users’ requirements as shown in
Figure 7.B. Besides the aforementioned two main reasons, we observed that data
user participants often fail to understand the mapping between anonymization
primitives suggested by iCAT ’s ambiguity solver and their utility requirements.
This lesson has led us to add a pop-up message showing an example of each
primitive in order to guide the user and avoid selecting the wrong suggestion.

Figure 7.C shows our analysis results about the failed requirements. We can
only observe privacy loss from data owners’ side due to a miss in the ontology
modeling, which has been fixed afterward. Utility loss could be caused at both
data owners and data users’ sides due to an incorrect translation of data owners’
requirements and the misinterpreting of the anonymization methods by data
users. Some no-translation requirements are due to typos in the input require-
ments. We will discuss those issues and how to address them in the following
section.

5.3 Usability

The usability of iCAT is evaluated based on two questionnaires. The first follows
the standardized usability questionnaires [?] and consists of 19 questions. It
provides the evaluation of the users’ satisfaction towards the services provided by
the tool (e.g., whether this tool converges the views and bridges the gaps between

12



DS1 DS2 DS3 DS4
Data Sets

0

20

40

60

80

100

pe
re

ce
nt

ag
e 

(%
)

iCAT Effectivness

DS1 DS2 DS3 DS4
Data sets

5

10

15

20

Pe
rc

en
ta

ge
 (

%
)

Failed Requirements Evaluation
Utility-loss/owner side
Manual validation/owner side
No-translation/owner side
Utility-loss/user side
No-Translation/user side

DS1 DS2 DS3 DS4
Data Sets 

0

20

40

60

80

100
Pe

re
ce

nt
ag

e 
(%

)

Ontology Failure NLP failure Translated Requirements

B) Data user requirements translation effectiveness C) Failed requirements analysisA) Data owner requirements translation effectiveness

Fig. 7: The effectiveness of requirements translation

data owners and users). The second surveys the sensitivity of the attributes and
the trust-level in different actors used to propose privacy/utility access control
mechanism for different attributes anonymization.

Results. Table 4 shows a summary of our main evaluation criteria and the
average rating out of seven. The results show that the data users are extremely
positive by the fact that they are part of the anonymization process through
expressing their requirements. On the other hand, the data owner participants
from industry clearly show interests in this tool because they can have different
anonymization levels of the same input data instead of the encrypt/hide policy
which they currently use. Data users also report that the tool requires some
privacy expertise, especially when it comes to deal with the ambiguity solver. As
mentioned before, to this issue, we have revised our design by adding concrete
examples for the anonymization primitives to make them easier to understand.

Category Question Score/7

Ease of use,
interactivity and

user friendly

It was simple to use iCAT 6.3
I can effectively complete my work using iCAT 5.2

I am able to complete my work quickly using iCAT 4.8
I am able to efficiently complete my work using iCAT 5.45

I feel comfortable using iCAT 5.7
It was easy to learn to use iCAT 4.2

I believe I became productive quickly using this system 6.4
The interface of this system is pleasant 6.5
like using the interface of this system 6.6

Errors detecting,
reporting and recovery

iCAT gives error messages to fix problems 5.7
I recover easily/quickly when I make a mistake 5.8

iCAT does not
need support/

background to use

It is easy to find the information I needed 4.4
The information provided for iCAT is easy to understand 3.5

The information is effective in completing the tasks 3.6
The information organization on iCAT screens is clear 5.7

This system has all the functions and capabilities I expect it to have Comment 6.1

The information provided with this system is clear (e.g., online help and other documentation) NA

The overall satisfaction
I am satisfied with how easy it is to use iCAT 5.3

I am satisfied with this system 6.2

Table 4: Usability results based on questionnaire designed following [?]

The second questionnaire is an online form and the results of this question-
naire are shown in the table of Figure 8. We applied the marginal distribution
and drew the trend of each attribute and actor as shown in Figures 8.A and

13



8.B. In general, we can observe that the attributes and actors are associated
with different sensitivity levels. The attribute Time, ID, Constant and Numbers
have similar data sharing strategy; internal actors could have low privacy and
high utility results, while competitors would be only provided with high privacy
and low utility data. The main reason is those attributes are not as sensitive
as personally identifiable information, but still can leak information that can be
used to stage security attacks. Attribute IP and Numbers (salary in our survey)
are considered to be sensitive attributes for all level actors who prefer to ap-
ply at least level 2 anonymization on them. This can be due to sharing policies
or cultural background which makes them less willing to share the information
carried by those attributes. Figure 8.B confirms the trust levels of the actors
through the levels of anonymization methods they are mostly assigned. Internal
auditors are mostly granted with level 1 anonymization only, while competitors
could only get level 6 anonymization results. External auditors and researchers
(generally under NDA) share similar trusted levels. This shows the participants
share similar visions related to the internal auditor and competitors and consider
the external auditors and researchers harmless.

Attribute Actor Level1 Level2 Level3 Level4 Level5 Level6

Time

I 95% 5%

E 45% 38% 6% 6% 5%

R 25% 50% 10% 5% 10%

C 5% 5% 20% 70%

ID

I 80% 5% 5% 10%

E 5% 70% 20% 5%

R 50% 5% 5% 10% 20% 10%

C 10% 25% 65%

String

I 55% 5% 40%

E 70% 15% 15%

R 25% 60% 5% 10%

C 20% 25% 55%

IP

I 75% 20% 5%

E 35% 15% 20% 20% 5%

R 40% 40% 10% 10%

C 25% 75%

Constant

I 40% 40% 20%

E 55% 20% 10% 5% 10%

R 45% 10% 30% 5% 10%

C 25% 5% 15% 55%

Number

I 60% 30% 5% 5%

E 25% 50% 5% 20%

R 5% 50% 5% 20% 20%

C 5% 45% 55%

Fig. 8: Sensitivity questionnaire and re-
sults analysis

1 2 3 4 5 6
0

10

20

30

D
is

tr
ib

ut
io

n

Marginal distribution of different attributes and actors

Timestamps

1 2 3 4 5 6
0

10

20

30

D
is

tr
ib

ut
io

n

IDs

1 2 3 4 5 6
0

10

20

30

40

D
is

tr
ib

ut
io

n

Strings

1 2 3 4 5 6
0

5

10

15

20

D
is

tr
ib

ut
io

n

Anonymization levels 

IPs

1 2 3 4 5 6
5

10

15

20

25

D
is

tr
ib

ut
io

n

Constants

1 2 3 4 5 6
0

10

20

30

D
is

tr
ib

ut
io

n

Anonymization levels 

Numbers

1 2 3 4 5 6
Anonymization levels 

0

20

40

60

80

D
is

tr
ib

ut
io

n

Internal Auditor
External Auditor
Researcher
Competitor

B) Sensitivity of different data actors

A) Sensitivity of different data attributes

14



5.4 Efficiency

In order to evaluate the overhead from different modules of iCAT, we measure
the time, memory and CPU consumption.

Results. Figure 9 shows the time, memory and CPU consumption of the data
anonymization process according to the four datasets. We measure the afore-
mentioned resource consumption according to four different events: i) E1: Data
loading and pre-processing; ii) E2: Anonymization space and access control ma-
trix generation; iii) E3: Ontology mapping; iv) E4: NLP translation. We also
evaluate the resource consumption of anonymization. The first three results in
Figure 9 are the overhead at the data owner side and the last two results are for
the data user. From data owner side, beside the onetime effort to load the data,
other operations have negligible consumptions. The overhead resulted from the
last two events at the data user side is related to the use of NLP server and the
anonymization primitives’ implementation, which are both out of our control.

DS1 DS2 DS3 DS4
Data Sets

0

10

20

30

40

M
em

or
y 

(%
)

iCAT Resources Consumption
Data loading/processing AS/ACM generation Ontologies mapping NLP processing Anonymization

DS1 DS2 DS3 DS4
Data Sets

0

20

40

60

80

100

120

140

T
im

e 
(s

ec
on

ds
)

Data loadind/processing

DS1 DS2 DS3 DS4
Data Sets

0

10

20

30

40

C
PU

 (
%

)

Data loading/processing
AS/ACM generation
Ontologies mapping

B) CPU consumption of iCAT C) Memory consumption of iCATA) Time consumption of iCAT

Onetime
effort

At data owner
side only

Fig. 9: The resources consumption of iCAT

6 Discussions

Compositional analysis. A well-known issue in anonymization is that releasing
multiple views of the same data may breach privacy since an adversary can
combine them. However, by the definition of our anonymization space lattice,
whatever levels inside its ‘privacy-up’ region can be safely released, because
all those views contain strictly less information than the specified privacy level
(in fact, those views may be derived from the latter) so combining them lends
the adversary no advantage. If, however, the data user is mistakenly assigned
different privacy levels at different time, then he/she can potentially combine
those views to gain more information. However, the anonymization space lattice
makes it easy for the data owner to see exactly what he/she will gain (i.e., the
GLB of those levels) and take appropriate actions.

Business-case. Nowadays data is becoming the most valuable asset and the
determiner of success in many aspects. We believe iCAT can be used to provide
“data anonymization as a service” in which the data owner sets the desired
privacy level for each (type of) data user, without worrying about their utility

15



requirements. Afterward, the data users can query the tool in an interactive
manner without any intervention from the data owner. The data owner can be
sure that the privacy is preserved, whereas the data users can obtain as many
anonymized views of the data as needed for different analyses.

Privacy analysis . iCAT does not propose any new anonymization primitive,
but relies on the correctness of existing solutions. The privacy/utility level of
iCAT output will be exactly the same as that of the anonymization primitives
being used. However, it is possible that iCAT may mistakenly translate the data
owner requirements and map them to unsafe levels. Therefore, in our design, the
data owner-side requirement translation is only intended as a suggestion, which
requires further validation by the data owner.

Tricking iCAT. As the data user and owner requirements are enforced inde-
pendently by iCAT, the data user cannot influence iCAT to use a primitive that
breaches the data owner’s requirements. This is enforced as follows: i) during
requirements translation, the ontologies for the data owner and user, respec-
tively, are stored and used separately; ii) iCAT, by design, does not allow the
data owner to publish the dataset until a privacy level is assigned to each data
attribute (either by processing requirements through NLP or manually).

Data linkage. We emphasize that such a limitation, de-anonymizing a given
dataset using publicly available data, is not due to iCAT as we mentioned earlier
in our threat model (Section 2.1). Nonetheless, using iCAT, the data owner will
have the flexibility to assign a privacy level for each data attribute and for each
data user. As a result, the data owner can always specify a higher privacy level
that is more resistant to linkage attacks (e.g., randomization) for less trusted
users or more sensitive attributes.

Ontologies learning. As we mentioned in our experiments, we have reported
requirements translation failures due to missing ontologies matching. We believe
a major opportunity here is to add a feedback module that learns the new
ontologies from both data owners and data users’ responses. We consider this
feedback module as future work.

7 Related Work

This section reviews existing works and their limitations.
Cryptography-based Anonymization Tools Most of the existing tools in
this category use cryptography-based anonymization primitives, such as prefix-
preserving, hashing and permutation. Existing tools in this category are used
to anonymize the network traces and mainly anonymize the TCP header. Some
of those tools support live interfaces anonymization. Table 5 compares those
tools according to the anonymized fields (e.g., IP, header, port, etc.) and the
anonymization primitives they use. As shown in the table, unlike iCAT, none of
those tools can support all the attributes or anonymization primitives (let alone
the flexibility for customization).
Replacement-based Anonymization Tools The existing tools in this cate-
gory deal mainly with log files and anonymize data by replacing the sensitive

16



Tool Anonymized Fields Anonymization Primitive

Name NF fields IP Port Header Payload Pref-Pres Hiding Permutation Truncation Hashing Shifitng

AnonToo [?] X X X X X X
CANINE [?] X X X X X X X X
CoralReef [?] X X X X X X

Flaim [?] X X X X X X X X
IPsumdump [?] X X X

NFDump [?] X X
SCRUB [?] X X X X X X

TCPanon [?] X X
tcpdpriv [?] X X X X X X X

TCPmkpub [?] X X X X X X
TCPurify [?] X X X X X

Table 5: Comparing existing network data anonymization tools. The symbol
X indicates that the proposal offers the corresponding feature.

attributes (e.g., passwords, IPs, paths) in the log with some values predefined by
the user in the so-called rule-file or generated using deterministic cryptography
algorithms. The rule file contains patterns used by the tool to perform pattern
matching and the conversion state of the anonymization can be stored in a look-
up table. Table 6 compares between these tools in terms of anonymized fields,
anonymization primitives used and how the mapping is achieved. This category
of anonymization provides a higher utility output, compared to the first category,
because it preserves some property of the original data (e.g., equality, format,
order, etc.). However, this also leaves the door open for de-anonymization at-
tacks, known as semantic attacks (e.g., frequency analysis, injection and shared
text matching attacks). Moreover, those tools are generally not user-friendly and
require knowledge about conducting tool-based search patterns and managing
the conversion state of the anonymized data.

Tool Anonymized Fields Anonymization Primitive Mapping

Name Number Path ID string IP Timestamp Hiding Substitution Randomization Hashing Shifitng Look-up table algorthim

Camouflage [?] X X X X X X X X X X X
Loganon [?] X X X X X X X
Log-anon [?] X X X X

Flaim [?] X X X X X X X X X
NLM [?] X X X X X X X

bsmpseu [?] X X X X X X X X X X

Table 6: Comparing different features of existing replacement anonymization
tools. The symbol X indicates that the proposal offers the corresponding feature.

8 Conclusion

We presented in this paper iCAT, a novel anonymization tool that brings cus-
tomization and interactivity to the data anonymization process to bridge the
existing gap between the data owners and the data users. Our tool leveraged
existing anonymization primitives in a systematic fashion based on the novel
concept of anonymization space. It also improved the usability by providing
users with the means to express their requirements using natural languages and
found for them the best-fit combination of anonymization primitives inside the
anonymization space using our ontology-driven NLP approach. Finally, iCAT
proposed a new privacy/utility access control model that allow involving the
data user in the anonymization process without compromising the data owner’s
privacy requirements. The main limitations of our work and the corresponding
future directions are as follows. First, we have mainly focused on the relational
model in this paper and we believe our tool can be extended to handle other
data models. Second, currently the ontology modeling is done offline, and im-
plementing a feedback module that allow for ontologies learning from users’

17



requirements can further improve the performance and minimize the use of the
ambiguity solver. Third, we have focused on network data, and extending our
model to cover more applications is left as future work.

Acknowledgment: The authors thank the anonymous reviewers for their
valuable comments. This work is partially supported by the Natural Sciences
and Engineering Research Council of Canada and Ericsson Canada under CRD
Grant N01823 and by PROMPT Quebec.

Appendix

The following details each module of iCAT as shown in Figure 6.B.

A) Data Loading and Processing (DLP). This module is used to load the
data, and enables filtering and cleansing operations. This module consists of
following sub-modules:

Data Processing: This sub-module enables performing data pre-processing and
adjustment operations. It can also automatically detect all data attributes and
their types, which are needed by the Anonymization Space Manager to build the
anonymization space lattice.

Data Filtering: This sub-module deploys several algorithms that can be auto-
matically and manually used to filter and remove records from data (e.g., column
deletion, row deletion, searched deletion and frequency deletion).

B) Requirements Interpreter (RI). This module translates the data owner’s
and data user’s requirements into data attributes types and anonymization prim-
itives. It consists of the following three sub-modules:

Requirements Parser: It takes the English statement and transforms them into
a set of requirements using the Stanford CoreNLP. Then, it processes and filters
those requirements using the POS tool.

Requirements Mapper: This sub-module takes the parsed requirements and com-
municates with the Method-Ontology and the Type-Ontology databases in order
to map each requirement into the related attribute type and then the correspond-
ing anonymization primitives.

Ambiguity Solver: This sub-module is mainly responsible of communicating with
the user (i.e. data owner or data user) through the Interactive Communicator
(IC) sub-module in order to solve any ambiguity that occurs at the Requirement
Mapper sub-module.

C) iCAT Manager.

Identity Access Management and Permission Granter (IPG): This module asso-
ciates the data user identity with the privacy-level specified by the data owner,
which is needed to determine the anonymization sub-space assigned to him based
on privacy-up principle.

Interactive Communicator: This sub-module is mainly responsible for interacting
with the data owner or data user and handles the communications between them
and the RI module.

18



I/O Manager: This module is responsible for configuring the data source from
where the data is fetched (e.g. from a file system or a database) and the loading
of the actual data to be anonymized.

D) Anonymization Space Manager. This module is mainly responsible of
generating the anonymization space and implementing the access control mech-
anism over the anonymization space for the data user. This module consists of
the following sub-modules:

Anonymization Space Builder (ASB): This sub-module automatically builds
the entire anonymization space, which consists of all available combination of
anonymization primitives for each data attribute based on its type. Building the
anonymization space lattice is detailed in Section 2.3. The resulting anonymization-
space lattice will be stored in the Access Control database.

Anonymization Controller: This module implements the access control mecha-
nism over the anonymization space for the data user. It receives the utility-level
from the data user and perform an intersection/masking operation between the
privacy level and utility level in order to determine the allowed combinations
of anonymization primitives. It also ensures that the Data Anonymizer only
accesses the allowed anonymization primitives for the user.

E) Data Anonymizer. This module is mainly responsible for anonymizing the
data with the respect to the trust-level assigned to the users. It is designed in a
building-blocks manner such that if there exist new or more efficient anonymiza-
tion primitives they can be easily integrated into iCAT. This module holds the
following sub-modules:

Anonymization Primitives: This sub-module holds the implementation of all ex-
isting anonymization algorithms corresponding to the 12 anonymization primi-
tives discussed in Section 2.

Anonymization Mapper: This sub-module is responsible of creating a mapping
file that maps the plain-text data into their anonymized values for later recogni-
tion purposes (e.g., if hashing is used to anonymize IP addresses, a file contains
the original IP addresses and their hashes are created).

19


	iCAT: An Interactive Customizable Anonymization Tool

