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ABSTRACT
Differential privacy (DP) has emerged as a de facto standard privacy

notion for a wide range of applications. Since the meaning of data

utility in different applications may vastly differ, a key challenge is

to find the optimal randomization mechanism, i.e., the distribution

and its parameters, for a given utility metric. Existing works have

identified the optimal distributions in some special cases, while

leaving all other utility metrics (e.g., usefulness and graph distance)

as open problems. Since existing works mostly rely on manual anal-

ysis to examine the search space of all distributions, it would be

an expensive process to repeat such efforts for each utility metric.

To address such deficiency, we propose a novel approach that can

automatically optimize different utility metrics found in diverse

applications under a common framework. Our key idea comes from

the known fact in probability theory that, by regarding the vari-

ance of the injected noise itself as a random variable, a two-fold

distribution may approximately cover the search space of all distri-

butions. Therefore, we can automatically find distributions in this

search space to optimize different utility metrics in a similar manner,

simply by optimizing the parameters of the two-fold distribution.

Specifically, we define a universal framework, namely, randomizing

the randomization mechanism of differential privacy (R
2
DP), and

we formally analyze its privacy and utility. Our experiments show

that R
2
DP can provide better results than the baseline distribu-

tion (Laplace) for several utility metrics with no known optimal

distributions, whereas our results asymptotically approach to the

optimality for utility metrics having known optimal distributions.

As a side benefit, the added degree of freedom introduced by the

two-fold distribution allows R
2
DP to accommodate the preferences

of both data owners and recipients.

1 INTRODUCTION
Significant amounts of individual information are being collected

and analyzed today through a wide variety of applications across

different industries [2]. Differential privacy has been widely recog-

nized as the de facto standard notion [20, 23] in protecting individ-

uals’ privacy during such data collection and analysis. On the other

hand, since the privacy constraints (e.g., the degree of random-

ization) imposed by differential privacy may render the released

data less useful for analysis, the fundamental trade-off between

privacy and utility (i.e., analysis accuracy) has attracted significant

attention in various settings [23, 25, 28, 54, 64, 67].

1.1 Motivation
In this context, a key issue is to identify the optimal randomization

mechanisms (i.e., distributions and their parameters) [4, 10, 31–33,

35, 38, 41]). While optimizing the parameters of a given distribution

can be easily automated, identifying the optimal distribution for

different utility metrics is more challenging, and typically requires

manual analysis to examine the search space of all distributions.

In fact, recent studies [4, 10, 31–33, 35, 38, 41] have only identified

the optimal randomization mechanisms for a limited number of

cases with specific utility metrics and queries. For instance, Ghosh

et al. [35, 38] showed that an optimal randomization mechanism

(adding a specific class of geometric noise) can be used to preserve

differential privacy under the class of negative expected loss utility

metrics for a single counting query. Subsequently, Geng et al. [33]

showed that, under the ℓ1 and ℓ2 norms, the widely used standard

Laplace mechanism is asymptotically optimal as 𝜖 → 0, whereas the

Staircase mechanism (which can be viewed as a geometric mixture

of uniform probability distributions) performs exponentially better

than the Laplace mechanism in case of weaker privacy guarantees

(a comprehensive literature review will be given in Section 6).

However, this has left the optimal distributions of many other

utility metrics as open problems, e.g., usefulness (for machine learn-

ing applications [7]), entropy-based measures (for signal processing

applications [17, 74], and semi-supervised learning [37]), and graph

distance metrics (for social network applications [49]). As shown

in the works of Ghosh et al. [35, 38] and Geng et al. [33], different

utility metrics will likely lead to different optimal distributions.

Moreover, since those existing works mostly rely on manual anal-

ysis to examine the search space of all distributions, it would be

an expensive process to repeat such efforts for each utility metric.

Consequently, many existing works simply employ a well-known

distribution (e.g., Laplace noise with constant scale parameter or
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Gaussian noise with constant variance) without worrying about

its optimality. Unfortunately, as our experimental results will show

(Section 5), choosing a non-optimal distribution (even with its pa-

rameters optimized) may lead to rather poor utility.

1

1

Figure 1: R2DP can automatically optimize different utility
metrics which have no known optimal distributions.

1.2 R2DP: A Universal Framework
Our key observation is the following. To build a universal frame-

work that can automatically find the optimal distribution in the

search space of all distributions, we would need a formulation to

link the differential privacy guarantee to the parameters of differ-

ent distributions (e.g., in Laplace mechanism, 𝜖 is proportionally

related to the inverse of variance). However, it is a known fact that

such a formulation varies for each distribution, which explains why

existing works have to rely on manual efforts to cover the search

space of all distributions, and it also becomes the main obstacle

to finding a universal solution that works for all utility metrics

employed in different applications.

As depicted in Figure 1, our key idea is that, although it is not

possible to directly cover the search space of all distributions in an

automated fashion, we can indirectly do so based on the following

known fact in probability theory, i.e., a two-fold randomization over

the exponential class of distributions may yield many other distribu-

tions to approximately cover the search space [16]. Since this class

of distributions are all originated from one of the exponential fam-

ily distributions, their differential privacy guarantee will become a

unique function of the parameters of the second fold distribution.

Therefore, these parameters can be used to automatically optimize

utility w.r.t. different utility metrics through a universal framework,

namely, randomizing the randomization mechanism in differential
privacy (R

2
DP). Furthermore, the two-fold distribution introduces

an added degree of freedom, which allows R
2
DP to incorporate the

requirements of both data owners and data recipients.

1.3 Contributions
Specifically, we make the following contributions:

(1) We define the R
2
DP framework with several unique benefits.

First, it provides the first universal solution that is applicable

to different utility metrics, which makes it an appealing so-

lution for applications whose utility metrics have no known

optimal distributions (e.g., [7, 17, 49, 74]). Second, unlike

most existing works which rely on manual analysis [35, 38],

R
2
DP can automatically identify a distribution that yields

near-optimal utility, and hence ismore practical for emerging

applications. Third, R
2
DP can incorporate the requirements

of both data owners and data recipients, which addresses a

practical limitation of most existing approaches, i.e., only the

privacy budget 𝜖 is considered in designing the differentially

private mechanisms.

(2) We formally benchmark R
2
DPunder thewell-studied Laplace

mechanism. We tackle several key challenges related to the

two-fold distribution in R
2
DP. We then show that this mech-

anism yields a class of log-convex distributions for which the

differential privacy guarantee can globally be given in terms

of the PDFs’ parameters. We also show that it can generate

near-optimal results w.r.t. a variety of utility metrics whose

optimality is known, e.g., Staircase-shape distribution for

large 𝜖 and Laplace itself for small 𝜖 [33].

(3) We evaluate R
2
DP using six different utility metrics, both

numerically and experimentally on real data, using both sta-

tistical queries (e.g., count and average), and data analytics

applications (e.g., machine learning and social network). The

experimental results demonstrate that R
2
DP can significantly

increase the utility for those utility metrics with no known

optimal distributions (compared to the baseline Laplace dis-

tribution). We also evaluate the optimality of R
2
DP using

utility metrics whose optimal distributions are known (e.g.,

Staircase-shape for ℓ1 and ℓ2 norms [33]) and our results

confirm that R
2
DP can generate near-optimal results.

(4) We discuss the potential of adapting R
2
DP to improve a

variety of other applications related to differential privacy,

e.g., query-workload answering.

The rest of the paper is organized as follows. Section 2 provides

some related background. Section 3 defines the R
2
DP framework.

Section 4 formally studies the differential privacy guarantee and

the utility of R
2
DP. Section 5 presents the experiments. Section 6

reviews the related work, and Section 7 concludes the paper.

2 PRELIMINARIES
We review some background on differential privacy for the theoret-

ical foundations of the R
2
DP framework.

2.1 Differential Privacy
We follow the standard definitions of 𝜖-differential privacy [25, 64].

Let D be a dataset of interest and 𝑑 , 𝑑 ′ be two adjacent subsets

of D meaning that we can obtain 𝑑 ′ from 𝑑 simply by adding or

subtracting the data of one individual. A randomization mechanism

M : D × Ω → R which is 𝜖-differentially private, necessarily

randomizes its output in such a way that for all 𝑆 ⊂ R,

P(M(𝑑) ∈ 𝑆) ≤ 𝑒𝜖P(M(𝑑 ′) ∈ 𝑆) (1)

If the inequality fails, then a leakage (𝜖 breach) takes place, which

means the difference between the prior distribution and posterior
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one is tangible. We recall below a basic mechanism that can be used

to answer queries in an 𝜖-differentially private way. We will only

be concerned with queries that return numerical answers, i.e., a

query is a mapping 𝑞 : D → R, where R is a set of real numbers.

The following sensitivity concept plays an important role in the

design of differentially private mechanisms [23].

Definition 2.1. The sensitivity of a query 𝑞 : D→ R is defined
as Δ𝑞 = max𝑑,𝑑′:Adj(𝑑,𝑑′) |𝑞(𝑑) − 𝑞(𝑑 ′) | [25, 64].

2.2 Laplace Mechanism
The Laplace mechanism [23] modifies an answer to a numeri-

cal query by adding zero-mean noise distributed according to a

Laplace distribution. Recall that the Laplace distribution with mean

zero and scale parameter 𝑏, denoted 𝐿𝑎𝑝 (𝑏), has density 𝑝 (𝑥 ;𝑏) =
1

2𝑏
𝑒𝑥𝑝 (− |𝑥 |

𝑏
) and variance 2𝑏2.

Theorem 2.1. Let 𝑞 : D → R be a query , 𝜖 > 0. Then the
mechanismM𝑞 : D × Ω → R defined byM𝑞 (𝑑) = 𝑞(𝑑) +𝑤 , with
𝑤 ∼ 𝐿𝑎𝑝 (𝑏), where 𝑏 ≥ Δ𝑞

𝜖 , is 𝜖-differentially private [23].

2.3 Utility Metrics
ℓ𝑝 Metrics. In penalized regression, “ℓ𝑝 penalty” refer to penalizing

the ℓ𝑝 norm of a solution’s vector of parameter values (i.e., the

sum of its absolute values, or its Euclidean length) [69]. In our

privacy-utility setting, the ℓ𝑝 utility metric is defined as follows.

Definition 2.2. (ℓ𝑝 ). For a database mechanismM𝑞 (𝐷) the ℓ𝑝
utility metric is defined as E( |M𝑞 (𝐷) − 𝑞(𝐷) |𝑝 )1/𝑝 .

Usefulness. Following Blum et al. [7], the following utility metric

is commonly used for machine learning.

Definition 2.3. (Usefulness). A mechanismM𝑞 is (𝛾, 𝜁 )-useful if,
with probability 1 − 𝜁 , for any dataset 𝑑 ⊆ D, |M𝑞 (𝑑) − 𝑞(𝑑) | ≤ 𝛾 .

Theorem 2.2. The Laplace Mechanism is ( Δ𝑞𝜖 ln
1

𝜁
, 𝜁 )-useful, or

equivalently, the Laplace Mechanism is (𝛾, 𝑒
−𝛾
𝑏 (𝜖 ) )-useful [13].

Mallows Metric. The Mallows metric has been applied for evalu-

ating the private estimation of the degree distribution of a social

network [42]. It is defined to test if two samples are drawn from

the same distribution. Given two random variables 𝑋 and 𝑌 , we

have𝑀𝑎𝑙𝑙𝑜𝑤 (𝑋,𝑌 ) = 1

𝑛

∑𝑛
𝑖=1 ( |𝑋𝑖 − 𝑌𝑖 |𝑝 )1/𝑝 (similar to 𝑝-norm).

Relative Entropy (Rényi Entropy). The relative entropy, also

known as the Kullback-Leibler (KL) divergence, measures the dis-

tance between two probability distributions [17]. Formally, given

two probability distributions 𝑝 (𝑥) and 𝑞(𝑥) over a discrete random
variable 𝑥 , the relative entropy given by 𝐷 (𝑝 | |𝑞) is defined as fol-

lows: 𝐷 (𝑝 | |𝑞) = ∑
𝑥 ∈X 𝑝 (𝑥) log

𝑝 (𝑥)
𝑞 (𝑥) . Further generalization came

from Rényi [36, 68], who introduced an indexed family of gener-

alized information and divergence measures akin to the Shannon

entropy and KL divergence. Rényi introduced the entropy of order

𝛼 as 𝐼𝛼 (𝑝 | |𝑞) = 1

𝛼−1 log(
∑
𝑥 ∈X 𝑝 (𝑥)𝛼𝑞(𝑥)1−𝛼 ) , 𝛼 > 0 and 𝛼 ≠ 1.

3 THE R2DP FRAMEWORK
In this section, we define the R

2
DP framework and its main building

block which is the Utility-maximized PDF finder.

3.1 Notions and Notations
In probability and statistics, a random variable (RV) that is dis-

tributed according to some parameterized PDFs, with (some of)

the parameters of that PDFs themselves being random variables, is

known as a mixture distribution [16] when the underlying RV is

discrete (or a compound distribution when the RV is continuous).

Compound (or mixture) distributions have been applied in many

contexts in the literature [66] and arise naturally where a statistical

population contains two or more sub-populations.

Definition 3.1. Let (Ω, F , P) be a probability space and let 𝑋 be
a RV that is distributed according to some parameterized distribution
𝑓 (𝜃 ) ∈ F with an unknown parameter 𝜃 that is again distributed
according to some other distribution 𝑔. The resulting distribution ℎ is
said to be the distribution that results from compounding 𝑓 with 𝑔,

ℎ(𝑋 ) =
∫
R
𝑓 (𝑋 |𝜃 )𝑔(𝜃 ) d𝜃 (2)

Then for any Borel subset 𝐵 of R,

P(𝑋 ∈ 𝐵) =
∫
𝐵

∫
R
𝑓 (𝑋 |𝜃 )𝑔(𝜃 ) d𝜃𝑑𝑋 (3)

In general, we call any differentially private query answering

mechanisms that leverage two-fold probability distribution func-

tions in their randomization, an R2DP mechanism.

Definition 3.2. (R2DPMechanism). LetM𝑞 (𝑑,𝑢) = 𝑞(𝑑)
⊕

𝜔 (𝑢)
be a mechanism randomizing the answer of a query 𝑞 using a random
oracle 𝜔 (𝑢), where 𝑢 is the set of parameters (mean, variance, etc.) of
the PDF of 𝜔 and

⊕
stands for the corresponding operator. Denote

by F the space of PDFs, we callM𝑞 (𝑑,𝑢) an R2DP mechanism if at
least one of the parameters 𝑢𝑖 ∈ 𝑢, (𝑖 ≤ |𝑢 |) is/are chosen randomly
w.r.t. a specified probability distribution 𝑓𝑢𝑖 ∈ F .

In particular, the R2DP Laplace mechanism will modify the an-

swer to a numerical query by adding zero-mean noise distributed

according to a compound Laplace distribution with the scale pa-

rameter 𝑏 itself distributed according to some distribution 𝑓𝑏 .

Example 3.1. Suppose that the scale parameter 𝑏 in a Laplace
mechanism is randomized as follows:

𝑏 =

{
𝑏1 w.p. 𝑝,

𝑏2 w.p. 1 − 𝑝.

Then, the perturbed result 𝑞(𝐷) + 𝐿𝑎𝑝 (𝑏) is an example R2DP
Laplace mechanism using a Bernoulli distribution.

Definition 3.3. Let 𝑞 : D→ R be a query and suppose 𝑓𝑏 ∈ F
is a probability density function of the scale parameter 𝑏. Then, the
mechanismM𝑞 : D×Ω → R, defined byM𝑞 (𝑑, 𝑏) = 𝑞(𝑑) +𝐿𝑎𝑝 (𝑏)
is an R2DP Laplace mechanism that utilizes PDF 𝑓𝑏 .

3.2 The Framework
As shown in Figure 2, R

2
DP framework include the following steps.

R2DP Computation:
• Step 1: The data owner specifies the differential privacy

budget 𝜖 and the data recipient specifies his/her query of

interest together with its required utility metric.
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Data Recipient

 ε-DP  

 q(D)+ω(σ4) 

Data Owner

 Query (q) 

Database D

Baseline DP 

mechanism

R
2
DP Computation

q(D)

ω(σ4)

DP 

mechanism

σ1

σ2

 σ3

σ5

σ4

1: Initialize

DP(ε), Query (q)

2: Compute the 

utility-maximized PDF 
 3: Sample the variance 

from the chosen PDF

5: Generate utility-maximized 

DP query result

4: Import the variance 

into the DP mechanism

σ4

Figure 2: The high level overview of the R2DP framework.

• Step 2: Given the input triplets (𝜖, query,metric), the utility-
maximized PDF computing module computes the provably

optimal probability density function and its parameters for

the variance of the additive noise. For example, in Figure 2,

the PDF computing module returns a lower tail truncated

Gaussian distribution for the specified inputs.

• Step 3: The variance sampler module randomly samples

(w.r.t. the PDF found in Step 2) one standard deviation 𝜎𝑖 of

the noise to be eventually added.

Baseline DP Randomization:

• Step 4: Next, the computed standard deviation 𝜎𝑖 is used

to generate a noise 𝜔 (𝜎4) for the baseline DP mechanism,

which is a DP mechanism of exponential order, e.g ., Laplace,

Gaussian and exponential mechanisms.

• Step 5: The computed noise 𝜔 (𝜎𝑖 ) is added to the query

result 𝑞(𝐷) to provide a utility-maximized DP result to the

data recipient.

The most important module of the R
2
DP framework is the utility-

maximized PDF computing module (Step 2) which will be described

in more details in the following. Furthermore, to make our discus-

sions more concrete, we instantiate the R
2
DP framework based

on the well studied Laplace mechanism, namely, the R2DP Laplace
mechanism, where other baseline DP mechanisms will be discussed

in Appendix F due to space limitation (from now on, we will simply

refer to the R
2
DP Laplace mechanism as R

2
DP). Particularly, we

show that, with a two-fold Laplace distribution, an infinite-size

class of log-convex distributions can be identified. This class of

distributions pertains a differential privacy guarantee which can

globally be given in terms of the PDFs’ parameters, and hence is

automatically optimizable under the differential privacy constraint.

3.3 Computing Utility-Maximized PDF
In Figure 2, to compute the utility-maximized PDF (Step 2), a key

challenge is to establish the search space of automatically opti-

mizable PDFs, from which the utility-maximized PDF is computed.

Ideally, the search space of an R
2
DP mechanism can be defined as

the collection of all two-fold distributions, e.g., with Laplace and

exponential as the first and second fold distributions, respectively.

However, the key challenge here is that a mixture of distributions

is itself a distribution which does not necessarily provide a global

differential privacy guarantee in terms of the resulting PDFs’ pa-

rameters (automatically optimizable under the differential privacy

constraint). To address this issue, the Moment Generating Function
(MGF) [30] of the second fold distribution could be utilized, e.g.,

given the first fold as Laplace distribution. Specifically, MGF of a

random variable is an alternative specification of its probability

distribution, and hence provides the basis of an alternative route to

analytical results compared with directly using probability density

functions or cumulative distribution functions [30]. In particular,

the MGF of a random variable is a log-convex function of its proba-

bility distribution which can provide a global differential privacy

guarantee [30] (see Theorem 4.1).

Definition 3.4. (Moment Generating Function [30]). Themoment-
generating function of a random variable 𝑥 is𝑀𝑋 (𝑡) := E

[
𝑒𝑡𝑋

]
, 𝑡 ∈

R wherever this expectation exists. The moment-generating function
is the expectation of the random variable 𝑒𝑡𝑋 .

Theorem 3.1. We can write the CDF of the output of an R2DP
mechanism in terms of theMoment Generating Function (MGF) [30]
of the probability distribution 𝑓 1

𝑏
, where 𝑏 is the randomized scale

parameter (see Appendix A and C for the details and the proof).

Thus, for a PDFwith non-negative support (since scale parameter

is always non-negative), the R
2
DP mechanism outputs another

PDF using the MGF (where CDF is the moment and PDF is its

derivative, as shown in Equation 10 in Appendix C) . Moreover,

since MGF is a bijective function [29], the R
2
DP mechanism can

in fact generate a search space as large as the space of all PDFs

with non-negative support and an existing MGF. However, the next

challenge is that not all random variables have moment generating

functions (MGFs), e.g., Cauchy distribution [12]. Fortunately, MGFs

possess an appealing composability property between independent

probability distributions [16], which can be used to provide a search

space of all linear combinations of a set of popular distributions

with known MGFs (infinite number of RVs).
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Theorem 3.2 (MGF of LinearCombination of RVs). If𝑥1, · · · , 𝑥𝑛
are 𝑛 independent RVs with MGFs𝑀𝑥𝑖 (𝑡) = E(𝑒𝑡𝑥𝑖 ) for 𝑖 = 1, · · · , 𝑛,
then the MGF of the linear combination 𝑌 =

𝑛∑
𝑖=1

𝑎𝑖𝑥𝑖 is
𝑛∏
𝑖=1

𝑀𝑥𝑖 (𝑎𝑖𝑡).

Consequently, we define the search space of the R
2
DP mecha-

nism as all possible linear combinations of a set of independent

RVs with existing MGF (Section 4.2.2 will provide more details on

how to choose the set of independent RVs). Although this search

space is only a subset of all two-fold distributions, we will show

through both numerical results (in Section E) and experiments with

real data (Section 5) that this search space is indeed sufficient to

generate near-optimal utility w.r.t. all utility metrics (universality).

4 PRIVACY AND UTILITY
In this section, we analyze the privacy and utility of the R

2
DP, and

then discuss extensions for improving and implementing R
2
DP.

4.1 Privacy Analysis
We now show the R

2
DP mechanism provides differential privacy

guarantee. By Theorem 3.1, the DP bound of the R
2
DP is

𝑒𝜖 = max

∀𝑆 ∈R

{ −𝑀 1

𝑏
(−|𝑥−𝑞 (𝑑) |) |𝑆≥𝑞 (𝑑 ) +𝑀 1

𝑏
(−|𝑥−𝑞 (𝑑) |) |𝑆<𝑞 (𝑑 )

−𝑀 1

𝑏
(−|𝑥−𝑞 (𝑑′) |) |𝑆≥𝑞 (𝑑′) +𝑀 1

𝑏
(−|𝑥−𝑞 (𝑑′) |) |𝑆<𝑞 (𝑑′)

}
Hence, the value of 𝑒𝜖 only depends on the distribution of re-

ciprocal of the scale parameter 𝑏, i.e., 𝑓 1
𝑏
. Moreover, an MGF is

positive and log-convex [30] where the latter property is desirable

in defining various natural logarithm upper bounds, e.g., DP bound.

In the following theorem, our MGF-based formula for the proba-

bility P({𝑞(𝑑) + 𝐿𝑎𝑝 (𝑏)} ∈ 𝑆) can be easily applied to calculate the

differential privacy guarantee (see Appendix C for the proof).

Theorem 4.1. The R2DP mechanismM𝑞 (𝑑, 𝑏) is

ln


E( 1

𝑏
)

d𝑀 1

𝑏
(𝑡)

d𝑡
|𝑡=−Δ𝑞


-differentially private. (4)

Moreover, Theorem 3.2 can be directly applied to calculate the

differential privacy guarantee of any RV from the search space

defined in Section 3.3 (i.e., all linear combinations of a set of inde-

pendent RVs with known MGFs).

Corollary 4.2 (Differential Privacy of Combined PDFs).

If 𝑥1, · · · , 𝑥𝑛 are 𝑛 independent random variables with respective
MGFs𝑀𝑥𝑖 (𝑡) = E(𝑒𝑡𝑥𝑖 ) for 𝑖 = 1, · · · , 𝑛, then the R2DP mechanism

M𝑞 (𝑑, 𝑏) where 1

𝑏
is defined as the linear combination 1

𝑏
=

𝑛∑
𝑖=1

𝑎𝑖𝑥𝑖

is 𝜖-differentially private, where

𝜖 = ln


𝑛∑
𝑗=1

𝑎 𝑗 · 𝐸𝑥 𝑗
( 1
𝑏
)

𝑛∑
𝑗=1

𝑎 𝑗 ·𝑀 ′𝑥 𝑗
(−𝑎 𝑗 · Δ𝑞) ·

𝑛∏
𝑖=1
𝑖≠𝑗

𝑀𝑥𝑖 (−𝑎𝑖 · Δ𝑞)


(5)

Therefore, we have established a search space of probability

distributions with a universal formulation for their differential

privacy guarantees, which is the key enabler for the universality of

R
2
DP. Next, we characterize the utility of R

2
DP mechanisms.

4.2 Utility Analysis
We now characterize the utility of the R

2
DP mechanism. To make

concrete discussions, we focus on the usefulness metric (see Sec-

tion 2), and a similar logic can also be applied to other metrics.

4.2.1 Characterizing the Utility. Denote by𝑈 (𝜖,Δ𝑞,𝛾) the useful-
ness of an R

2
DP mechanism for all 𝜖 > 0, sensitivity Δ𝑞 and error

bound 𝛾 . The optimal usefulness is then given as the answer of the

following optimization problem over the search space of PDFs.

max

𝑓 1
𝑏
∈𝐹

{
𝑈 (𝜖,Δ𝑞,𝛾)

}
= max

𝑓 1
𝑏
∈𝐹

{
1

2
·
[
−𝑀 1

𝑏
(−|𝑥 − 𝑞(𝑑) |) |𝑞 (𝑑)+𝛾

𝑞 (𝑑)

+𝑀 1

𝑏
(−|𝑥 − 𝑞(𝑑) |) |𝑞 (𝑑)

𝑞 (𝑑)−𝛾

]}
,

subject to 𝜖 = ln


E( 1

𝑏
)

d𝑀 1

𝑏
(𝑡)

d𝑡
|𝑡=−Δ𝑞


where the utility function is the probability of generating 𝜖-DP

query results within a distance of 𝛾-error (using Theorem 3.1). Note

that 𝜖 and Δ𝑞 do not directly impact the usefulness but they do so

indirectly through the differential privacy constraint. Furthermore,

as shown in Theorem 4.1, the differential privacy guarantee 𝜖 over

the established search space is a unique function of the parameters

of the second-fold distribution.

Corollary 4.3. Denote by𝑢, the set of parameters for a probability
distribution 𝑓 1

𝑏
, and by𝑀𝑓 (𝑢) its MGF. Then, the optimal usefulness

of an R2DP mechanism utilizing 𝑓 1
𝑏
, at each triplet (𝜖,Δ𝑞,𝛾) is

𝑈𝑓 (𝜖,Δ𝑞,𝛾) = max

𝑢∈R|𝑢 |

{
1

2
·
[
−𝑀𝑓 (𝑢) (−|𝑥 − 𝑞(𝑑) |) |

𝑞 (𝑑)+𝛾
𝑞 (𝑑)

+𝑀𝑓 (𝑢) (−|𝑥 − 𝑞(𝑑) |) |
𝑞 (𝑑)
𝑞 (𝑑)−𝛾

]}
,

subject to 𝜖 = ln


E( 1

𝑏
)

d𝑀 1

𝑏
(𝑡)

d𝑡
|𝑡=−Δ𝑞


Since MGFs are positive and log-convex, with𝑀 (0) = 1, we have

𝑈𝑓 (𝜖,Δ𝑞,𝛾) = 1 − min

𝑢∈R|𝑢 |
𝑀𝑓 (𝑢) (−𝛾). Thus, for usefulness metric,

the optimal distribution for 𝜖 is the one with the minimum MGF

evaluated at 𝛾 . In particular, for a set of privacy/utility parameters,

we can find the optimal PDF using the Lagrange multiplier [6]. i.e.,

L(𝑢, 𝜆) = 𝑀𝑓 (𝑢) (−𝛾) + 𝜆 · (ln


E( 1

𝑏
)

d𝑀 1

𝑏
(𝑡)

d𝑡
|𝑡=−Δ𝑞


− 𝜖) (6)

Moreover, Theorem 3.2 can be directly applied to design a utility-

maximizing R
2
DP mechanism with a sufficiently large search space

(with an infinite number of different random variables).

Corollary 4.4 (Optimal Utility for Combined RVs). If 𝑥1, 𝑥2,
· · · , 𝑥𝑛 are 𝑛 independent random variables with respective MGFs
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𝑀𝑥𝑖 (𝑡) = E(𝑒𝑡𝑥𝑖 ) for 𝑖 = 1, 2, · · · , 𝑛, then for the linear combination

𝑌 =
𝑛∑
𝑖=1

𝑎𝑖𝑥𝑖 , the optimal usefulness (similar relation holds for other

metrics) under 𝜖-differential privacy constraint is given as

𝑈𝑌 (𝜖,Δ𝑞,𝛾) = 1 − min

A,U

{
𝑛∏
𝑖=1

𝑀𝑥𝑖 (−𝑎𝑖𝛾)
}

(7)

subject to

𝜖 = ln



𝑛∑
𝑗=1

𝑎 𝑗 · 𝐸𝑥 𝑗
( 1
𝑏
)

𝑛∑
𝑗=1

𝑎 𝑗 ·𝑀 ′𝑥 𝑗
(𝑎 𝑗 · −Δ𝑞) ·

𝑛∏
𝑖=1
𝑖≠𝑗

𝑀𝑥𝑖 (−𝑎𝑖 · Δ𝑞)


where A = {𝑎1, 𝑎2, · · · , 𝑎𝑛} is the set of the coefficients and U =

{𝑢1, 𝑢2, · · · , 𝑢𝑛} is the set of parameters of the probability distribu-
tions of RVs 𝑥𝑖 , ∀𝑖 ≤ 𝑛.

Similar to the case of a single RV, we can compute the optimal

solution for this optimization problem using the Lagrangemultiplier

function in Equation 6.

4.2.2 Finding Utility-Maximizing Distributions. Since not all second-
fold probability distributions can boost the utility of the baseline

Laplace mechanism, leveraging all RVs into our search space would

only result in redundant computation by the utility-maximized PDF

computing module. Accordingly, in this section, we first derive a

necessary condition on the differential privacy guarantee of R
2
DP

to boost the utility of the baseline Laplace mechanism (refer to

Appendix C for the proof). Using this necessary condition, we can

easily filter out those probability distributions that cannot deliver

any utility improvement.

Theorem 4.5. The utility of R2DP with 𝜖 ≥ ln

[
E 1

𝑏

(
𝑒𝜖 (𝑏)

) ]
is

always upper bounded by the utility of the 𝜖-differentially private
baseline Laplace mechanism. Equivalently, for an R2DP mechanism
to boost the utility, the following relation is necessarily true.

𝑒𝜖 =
E( 1

𝑏
)

𝑀 ′
1

𝑏

(−Δ𝑞) < 𝑀 1

𝑏
(Δ𝑞) (8)

We note that 𝜖 = ln

[
E 1

𝑏

(
𝑒𝜖 (𝑏)

) ]
provides a tight upper bound

since it gives the overall 𝑒𝜖 of an R2DPmechanism as the average of

differential privacy leakage. Next, we examine a set of well-known

PDFs as second-fold distribution to identify the distribution that

offers a significantly improved utility compared with the bound

given in Theorem 4.5. Promisingly, our analytic evaluations for

three of these distributions, i.e., Gamma, uniform and truncated

Gaussian distributions demonstrate such a payoff (Appendix B

theoretically analyzes several case study PDFs). We note that those

chosen distributions are general enough to cover many of other

probability distributions (e.g., Exponential, Erlang, and Chi-squared

distributions are special cases of Gamma distribution).

4.2.3 Deriving Error Bounds. The error bounds of the R2DP mech-

anism under some well-known utility metrics are shown in Table 1.

The key idea in deriving these results is to calculate the mean of

each utility metric over the PDF of RV 1/𝑏 (which is the linear

combination of RVs in multiple PDFs). Specifically, given the error

bound 𝑒𝐿 (𝑏) for deterministic variance (i.e., Laplace mechanism),

the total error bound of an R
2
DP mechanism will be the mean∫ ∞

0
𝑒𝐿 (𝑏) 𝑓𝑏 (𝑏)𝑑𝑏. The results shown in Table 1 can be easily ap-

plied to optimize those metrics in corresponding applications (e.g.,

ℓ1 for private record matching [44], ℓ2 for location privacy [8], use-

fulness for machine learning [7], Mallows for social network analy-

sis [42], and relative entropy (with a degree 𝛼) for semi-supervised

learning [37]).

Table 1: Error bound of R2DP under different metrics

Metric Dependency to Prior R2DP Error Bound

ℓ1 independent

∞∫
0

𝑀 1

𝑏
(−𝑥)𝑑𝑥

ℓ2 independent

√
2

∞∬
0

𝑀 1

𝑏
(−𝑢)𝑑𝑢𝑑𝑥

Usefulness independent 1 −𝑀 1

𝑏
(−𝛾)

Mallows (p) dependent

(
[∑𝑛

𝑖=1 |𝑁𝑖 ∼ [−𝑀 ′1
𝑏

(−𝑥)/2] |𝑝 ]/𝑛
)
1/𝑝

Relative Entropy (𝛼) dependent

log

∑𝑛
𝑥∈X 𝑝 (𝑥)𝛼𝑞 (𝑥)1−𝛼

𝛼−1 s.t(𝑞(𝑥) − 𝑝 (𝑥)) ∼ −𝑀 ′
1

𝑏

(−𝑥)/2

In this context, the ℓ1, ℓ2 and usefulness metrics (as defined in

Section 2.3) are independent to the prior (i.e., not depending on the

distribution of the true results). The metrics will be evaluated based

on the deviation between the true and noisy results (which does

not change regardless of the prior). On the contrary, some other

metrics (e.g., Mallows and relative entropy) depend on the prior

distribution of the true results [37, 42]. In such cases, the metrics

will be evaluated based on the deviation between the true and noisy

results w.r.t. the prior in specific experimental settings (we will

discuss those specific priors used in the experiments in Section 5).

In addition to the error bounds given in Table 1, an analyst can

derive error bounds for more advanced queries, e.g., those pertain-

ing to learning algorithms [22, 47, 71, 84]. Given the error bound

of Laplace mechanism in an application (e.g., Linear SVM [47]), the

error bound of the R
2
DP framework for this application can be

derived by taking average of the Laplace’s result over the PDF of

1

𝑏𝑟
. In particular, Table 2 demonstrates the error bounds of R

2
DP

for some learning algorithms (as shown in Section 5, those learning

algorithms can benefit from integrating R
2
DP instead of Laplace).

To derive the error bounds shown in Table 1 and Table 2, the

noise parameter(s) and the PDFs used in R
2
DP can be released to

a downstream analyst. This will not cause any privacy leakage

because, similar to other differential privacy mechanisms, the pri-

vacy protection of R2DP comes from the (first-fold) randomization

(whose generated random noises are never disclosed), which will

not be affected even if all the noise parameter(s) and the PDFs are

disclosed (see Section 4.1 and Appendix C for the formal privacy

analysis and proof). We note that, although R
2
DP replaces the fixed

variance of a standard differential privacy mechanism with a ran-

dom variance, this second-fold randomization is not meant to keep

the generated parameters (e.g., the variance) secret, but designed

to cover a larger search space (as detailed in Section 3.3).

4.3 R2DP Application
We now present the R

2
DP algorithm as well as discuss its applica-

tion to more advanced algorithms.
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Table 2: R2DP compared to Laplace w.r.t. error bounds for learning algorithms

Linear SVM [47] Bayesian Inference (statistician) [84] Robust Linear Regression [22] Naive Bayes [71]

Laplace 𝑂 ( log(1/𝛽)
𝛼2

+ 1

𝜖𝛼 +
log(1/𝛽)

𝛼𝜖 ) 𝑂 (𝑚𝑛 log(𝑛)) [1 − 𝑒𝑥𝑝 (− 𝑛𝜖
2 |I | ] 𝑂 (𝑛−𝜖𝑙𝑜𝑔𝑛) 𝑂 ( 1𝑛𝜖 )

R
2
DP 𝑂 ( log(1/𝛽)

𝛼2
+ E 1

𝑏
( 𝑏𝛼 +

𝑏 log(1/𝛽)
𝛼 )) 𝑂 (𝑚𝑛 log(𝑛)) [1 −𝑀 1

𝑏
(− 𝑛

2 |I | )] 𝑂 (E 1

𝑏
(𝑛−

𝑙𝑜𝑔𝑛

𝑏 )) 𝑂 (E 1

𝑏
( 𝑏𝑛 ))

4.3.1 The R2DP Algorithm. Algorithm 1 details an instance of the

R
2
DP framework using linear combination of three different PDFs.

In particular, the algorithm with 𝜖-DP finds the best second-fold dis-

tribution using the Lagrange multiplier function (see Appendix D)

that optimizes the utility metric. Then, the algorithm randomly

generates the noise using the two-fold distribution (e.g., first-fold

Laplace) and injects it into the query.

Input :Dataset 𝐷 , Privacy budget 𝜖 , Query 𝑞 ( ·) , Metric and its

parameters (from data recipient)

Output :Query result 𝑞 (𝐷) + 𝐿𝑎𝑝 (𝑏𝑟 ) , DP guarantee 𝜖 ,

Second-fold PDF’s parameters

1 Δ𝑞 ← Sensitivity (𝑞 ( ·))
2 Find optimal parameters from Lagrange Multiplier

L(𝜖,Δ𝑞,metric) =
𝑎
𝑜𝑝𝑡

1
, 𝑎

𝑜𝑝𝑡

2
, 𝑎

𝑜𝑝𝑡

3
, 𝑘𝑜𝑝𝑡 , 𝜃𝑜𝑝𝑡 , 𝑎

𝑜𝑝𝑡
𝑢 , 𝑏

𝑜𝑝𝑡
𝑢 , 𝜇𝑜𝑝𝑡 , 𝜎𝑜𝑝𝑡 , 𝑎

𝑜𝑝𝑡

N𝑇 , 𝑏
𝑜𝑝𝑡

N𝑇
3 𝑋1 ∼ Γ (𝑘𝑜𝑝𝑡 , 𝜃𝑜𝑝𝑡 )
4 𝑋2 ∼ 𝑈 (𝑎𝑜𝑝𝑡𝑢 , 𝑏

𝑜𝑝𝑡
𝑢 )

5 𝑋3 ∼ N𝑇 (𝜇𝑜𝑝𝑡 , 𝜎𝑜𝑝𝑡 , 𝑎
𝑜𝑝𝑡

N𝑇 , 𝑏
𝑜𝑝𝑡

N𝑇 )
6 1

𝑏𝑟
= 𝑎

𝑜𝑝𝑡

1
·𝑋1 + 𝑎𝑜𝑝𝑡

2
·𝑋2 + 𝑎𝑜𝑝𝑡

3
·𝑋3

7 return 𝑞 (𝐷) + 𝐿𝑎𝑝 (𝑏𝑟 ) , 𝜖 , L(𝜖,Δ𝑞,metric)

Algorithm 1: The Ensemble R
2
DP Algorithm

4.3.2 R2DP andAdvanced Algorithms. Webriefly discuss howR
2
DP

can be applied to improve the utility of advanced algorithms for

histogram estimation and query-workload answering (e.g., the pop-

ular matrix mechanism [59]) (more applications, such as composi-

tion and local differential privacy, are discussed in Appendix G).

In particular, given a workload (aka. a batch of queries), the ma-

trix mechanism generates a different set of queries, called strategy
queries, which are answered using a standard Laplace or Gaussian

mechanism. The noisy answers to the workload queries can then

be derived from the noisy answers to the strategy queries [57]. This

two-stage process can result in a correlated noise distribution that

preserves differential privacy and also increases utility.

Given a triplet (𝜖 , query, metric), R
2
DP can be applied to replace

the Laplace or Gaussian mechanism for answering the strategy

queries of the matrix mechanism. As a result, R
2
DP will provide

additional improvement in utility (in terms of the TotalError as

defined in [57]) over the improvement already provided by the

matrix mechanism. More specifically, we compare the total errors

of Laplace and R2DP mechanisms in Table 3 for specific workloads

of interest (similar to those considered in [57]). These two work-

loads were analyzed in [57] using two 𝑛-sized query strategies,

each of which can be envisioned as a recursive partitioning of the

domain based on the Haar wavelet [78]. We denote by 𝑓 (𝜖,Δ𝑞) the
improvement in the TotalError for applying an R

2
DP noise instead

of a Laplace noise in the matrix mechanism. For instance, leverag-

ing the results of R
2
DP (w.r.t. ℓ1 or ℓ2) shown in Section 5.2.2, for

a workload of size 𝑛 = 6, at 𝜖 = 2.3, the improvement for range

queries (Δ𝑞 = 36) and predicate queries (Δ𝑞 = 64) are ∼20% and

∼10%, respectively.

Table 3: Total error ofmatrixmechanisms comparison (with
R2DP vs. Laplace) – two workloads and two query strategies

TotalError Matrix Strategies

Mechanisms Workload Queries Binary Hierarchy of Sums Matrix of the Haar Wavelet

Laplace

Range Queries Θ(𝑛2 log3 (𝑛)/𝜖2) Θ(𝑛2 log3 (𝑛)/𝜖2)
Predicate Queries Θ(𝑛2𝑛 log2 (𝑛)/𝜖2) Θ(𝑛2𝑛 log2 (𝑛)/𝜖2)

R
2
DP

Range Queries Θ(𝑓 (𝜖, 𝑛2)𝑛2 log3 (𝑛)/𝜖2) Θ(𝑓 (𝜖, 𝑛2)𝑛2𝜖2 log3 (𝑛))
Predicate Queries Θ(𝑓 (𝜖, 2𝑛)𝑛2𝑛 log2 (𝑛)/𝜖2) Θ(𝑓 (𝜖, 2𝑛)𝑛2𝑛 log2 (𝑛)/𝜖2)

5 EXPERIMENTAL EVALUATIONS
In this section, we experimentally evaluate the performance of

the R
2
DP framework using six different utility metrics, i.e., ℓ1, ℓ2,

entropy, usefulness, Mallows and Rényi divergence. Furthermore,

we investigate the tightness of the R
2
DP mechanism under Rényi

differential privacy (RDP in short) [62] which provides a univer-

sal formulation of the privacy losses of various DP mechanisms,

as shown in Appendix F.2.2 (facilitating the comparison between

different mechanisms). Our objective is to verify the following two

properties about the performance of the R
2
DP framework w.r.t. all

seven utility and privacy metrics: (1) R
2
DP produces near-optimal

results and (2) R
2
DP performs strictly better than well-known base-

line mechanisms, e.g, Laplace and Staircase mechanisms, in settings

where an optimal PDF is not known, e.g., usefulness utility metric

or Rényi differential privacy .

5.1 Experimental Setting
We perform all the experiments and comparisons on the Privacy

Integrated Queries (PINQ) platform [61]. Besides basic statistical

queries, two applications in the current suite (machine learning and
social network analysis) are employed to evaluate the accuracy of

R
2
DP and compare it to Laplace and Staircase mechanisms.

5.1.1 Statistical Queries. In the first set of our experiments, we

examine the benefits of R
2
DP using basic statistical functions, i.e.,

count and average. The dataset comes from a sensor network exper-

iment carried out in the Mitsubishi Electric Research Laboratories

(MERL) and described in [77]. MERL has collected motion sen-

sor data from a network of over 200 sensors for a year and the

dataset contains over 30 million raw motion records. To illustrate

the query performance with different sensitivities, we create the

queries based on a subset of the data including aggregated events

that are recorded by closely located sensors over 5-minute intervals.

We formed in this way 10 input signals corresponding to 10 spatial

zones (each zone is covered by a group of sensors). Since each in-

dividual can activate several sensors and travel through different
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(a) Δ𝑞 = 0.5, 𝛾 = 0.1
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(b) Δ𝑞 = 0.5, 𝛾 = 0.4
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(c) Δ𝑞 = 0.5, 𝛾 = 0.6
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(d) Δ𝑞 = 0.5, 𝛾 = 0.9
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(e) Δ𝑞 = 1, 𝛾 = 0.1
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(f) Δ𝑞 = 1, 𝛾 = 0.4
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(g) Δ𝑞 = 1, 𝛾 = 0.6
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(h) Δ𝑞 = 1, 𝛾 = 0.9

Figure 3: Usefulness metric: R2DP (with five PDFs, i.e., Gamma, Uniform, Truncated Gaussian, Noncentral Chi-squared and
Rayleigh distributions) strictly outperforms Laplace and Staircase mechanisms for statistical queries, where the ratio of im-
provement depends on the values of Δ𝑞, 𝛾 and 𝜖.

zones, we define moving average functions with arbitrary sensitiv-

ity values, e.g., Δ𝑞 ∈ [0.1, 5]. For instance, we could be interested

in the summation of the moving averages over the past 30 min for

zones 1 to 4. We apply R
2
DP w.r.t. usefulness, ℓ1, ℓ2, entropy, and

Rényi metrics, respectively.

5.1.2 Social Network. Social network degree distribution is per-

formed on a Facebook dataset [55]. They consist of “circles” and

“friends lists” from Facebook by representing different individuals

as nodes (47,538 nodes) and friend connections as edges (222,887

edges). Recall that the Mallows metric is frequently used for social

network (graph-based) applications [49]. We thus apply R
2
DP w.r.t.

the Mallows metric in this group of experiments.

5.1.3 Machine Learning. Naive Bayes classification is performed

on two datasets: Adult dataset (in the UCI ML Repository) [51]

and KDDCup99 dataset [70]. First, the Adult dataset includes the

demographic information of 48,842 different adults in the US (14

features). It can be utilized to train a Naive Bayes classifier to predict

if any adult’s annual salary is greater than 50k or not. Second, the

KDD competition dataset was utilized to build a network intrusion

detector (given 24 training attack types) by classifying “bad” con-

nections and “good” connections. Recall that the usefulness metric

is commonly used for machine learning [7]. We thus apply R
2
DP

w.r.t. the usefulness in this group of experiments.

5.2 Basic Statistical Queries
We validate the effectiveness of R

2
DP using two basic statistical

queries: count (sensitivity=1) and moving average with different

window sizes, e.g., sensitivity ∈ [0.1, 2] to comprehensively study

the performance of R
2
DP by benchmarking with Laplace and Stair-

case mechanisms. We have the following observations.

5.2.1 UsefulnessMetric. We compare R
2
DPwith the baseline Laplace

and two classes of Staircase mechanisms proposed in [38] w.r.t. ℓ1
and ℓ2 metrics, by varying the privacy budget 𝜖 , four error bounds

𝛾 ∈ {0.1, 0.4, 0.6, 0.9} and two different sensitivities (Section E addi-

tionally shows numerical results to provide a more comprehensive

evaluation for the usefulness metric). As shown in Figure 3, R
2
DP

generates strictly better results w.r.t. the usefulness metric, and the

ratio of improvement depends on values of 𝜖 , Δ𝑞 and𝛾 . In particular,
we observe that the improvement is relatively larger for a larger

error bound and smaller sensitivity (Figure 3 (a,b,e,f) vs. (c,d,g,h)).

One important factor determining the improvement is the ratio

between 𝛾 and Δ𝑞, since it exponentially affects the search space of

the R
2
DP mechanism. Furthermore, we observe that the Laplace

and the staircase mechanisms are not optimal (w.r.t. usefulness) for

very small and large values of 𝜖 , respectively, even though they are

known to be optimal under other utility metrics (e.g., [34]).

5.2.2 ℓ1 and ℓ2Metrics. We compare R
2
DPwith the baseline Laplace

and Staircase mechanisms [38], by varying the privacy budget 𝜖

and for four different sensitivities Δ𝑞 ∈ {0.1, 0.5, 1, 1.5}. Our results
validate the findings of Geng et al. [34], i.e., in the low privacy

regime (𝜖 →∞), the Staircase mechanism is optimal while in the

high privacy regime (𝜖 → 0), the Laplace mechanism is optimal.

More importantly, our evaluations show that, for medium regime

of privacy budgets (which could be more desirable in practice), the

class of optimal noise can be totally different. In fact, as shown
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Figure 4: ℓ1 and ℓ2 metrics: R2DP compared to Laplace and Staircase mechanisms for statistical queries (with five PDFs, i.e.,
Gamma, Uniform, Truncated Gaussian, Noncentral Chi-squared and Rayleigh distributions).
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Figure 5: KL Divergence (Relative entropy metric): R2DP (with five PDFs, i.e., Gamma, Uniform, Truncated Gaussian, Noncen-
tral Chi-squared and Rayleigh distributions) compared to Laplace and Staircase mechanisms.

in Geng et al. [34], the lower-bound of 𝜖 at which the Staircase

distribution performs better than the Laplace distribution is some-

where around 𝜖 = 3 for both ℓ1 and ℓ2 metrics. As illustrated in

Figure 4, in contrast to ℓ1 metric (for which the results of laplace

and staircase are relatively tight), R
2
DP can find a class of noises

with significantly improved ℓ2 metric for 𝜖 < 3 (a logarithmic X

axis is used to illustrate the performance in this region). The PDF

of this class of noises is mostly two-fold distributions with Laplace

distribution as the first fold, and Gamma distribution as the second

fold. This finding is in line with the optimal class of noise proposed

by Koufogiannis et al. [52], i.e., 𝑓 (𝑣) =
𝜖𝑛Γ( 𝑛

2
+ 1)

𝜋
𝑛
2 Γ(𝑛 + 1)

𝑒−𝜖 | |𝑣 | |2 . Fur-

thermore, our results suggest different classes of optimal noises

(than those found in the literature) for different parameters, sensi-

tivity, 𝜖 and 𝑝 (index of ℓ norm). In particular, a larger 𝑝 tends to

provide larger search spaces for R
2
DP optimization, which results

in further improved results for 𝜖 < 3 (Figure 4 (a,b,e,f) vs. (c,d,g,h)).

5.2.3 Relative Entropy Metric. As Wang et al [75] has already

shown that the output entropy of 𝜖-DP randomization mechanisms

is lower bounded by 1− ln(𝜖/2) (for count queries) and the optimal

result is achieved with Laplace mechanism, we focus our entropy

metric evaluation on relative entropy metrics, i.e., KL and Rényi

divergences. To define the prior distribution for this group of ex-

periments, we have created a histogram with 50 bins of our data
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Figure 6: Rényi Divergence (Relative entropy metric): R2DP (with five PDFs, i.e., Gamma, Uniform, Truncated Gaussian, Non-
central Chi-squared and Rayleigh distributions) compared to Laplace and Staircase mechanisms.
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Figure 7: Rényi Differential Privacy: (a-d) R2DP compared to Laplace and Random Response mechanisms, and (e-h) R2DP
compared to Gaussian mechanism.

and calculated the probability mass function (pmf) of the bins.
1
As

illustrated in Figure 5, we can draw similar observations for the KL

entropy metric. In particular, we observe that R
2
DP performs better

for smaller sensitivity due to the larger search space of PDFs used

in optimization. Similarly the Rényi divergence entropy depicted in

Figure 6 illustrates a similar trend with given different 𝛼 (the index

of the divergence).

Summary. R2DP mechanism can generate better results than most

of the well-known distributions for utility metrics without known

1
2 millions records fall into 50 bins (e.g., equal range for each bin). Then, any counting

and moving average query (with different sensitivities) can be performed within each

of the 50 bins to generate the distribution. Finally, the distance between the original

and noisy distributions can be measured using the relative entropy metrics.

optimal distributions (e.g., usefulness), and our results asymptoti-

cally approach to the optimal for utility metrics with known optimal

distributions (e.g., ℓ1 and ℓ2). In particular, even though R
2
DP is not

specifically designed to optimize ℓ1 and ℓ2 metrics, we observe a

very similar performance between the R
2
DP results and the opti-

mal Staircase results, e.g., the multiplicative gain compared to the

Laplace results. We note that using a larger number of independent

RVs drawm from different PDFs as the search space generator may

further improve the results.
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5.3 Tightness of R2DP under Rényi DP
Rényi differential privacy [62] is a recently proposed as a relaxed

notion of DP which effectively quantifies the bad outcomes in (𝜖, 𝛿)-

DP mechanisms and consequently evaluates how such mechanisms

behave under sequential compositions (see Appendix F.2.2 for de-

tails on Rényi DP). We now evaluate how the privacy loss of R
2
DP

behaves under Rényi DP.

Specifically, this group of experiments are conducted to pro-

vide insights about the privacy loss of R
2
DP and other well-known

mechanisms. In particular, Figure 7 (a-d) depicts the Rényi differen-

tial privacy of the R
2
DP and two basic mechanisms for counting

queries: random response and Laplace mechanisms. These results

are based on the privacy guarantees depicted in Table 4. Our results

demonstrate that fine tuning R
2
DP can generate strictly more pri-

vate results compared to the other two 𝜖-DP mechanisms when the

definition of the privacy notion is relaxed. Furthermore, the level

of such tightness depends on the Rényi differential privacy index

where a smaller value of 𝛼 pertains to a relatively tighter R
2
DP

mechanism. On the other hand, all three mechanisms behave more

similarly as 𝛼 increases. Ultimately, at 𝛼 →∞, where Rényi differ-
ential privacy becomes equivalent to the classic notion of 𝜖-DP, all

three mechanisms’ privacy guarantees converge to 𝜖 .

Table 4: Summary of Rényi DP parameters for four mecha-
nisms based on Theorem F.4

Mechanism Differential Privacy Rényi Differential Privacy for 𝛼

Laplace
1

𝑏

𝛼 > 1 :
1

𝛼−1 log
[
𝛼 ·𝑒𝑥𝑝 ( 𝛼−1

𝑏
)+(𝛼−1) ·𝑒𝑥𝑝 ( −𝛼

𝑏
)

2𝛼−1

]
𝛼 = 1 :

1

𝑏
+ 𝑒𝑥𝑝 ( −1

𝑏
) − 1

Random Response | log 𝑝
1−𝑝 |

𝛼 > 1 :
1

𝛼−1 log
[
𝑝𝛼 (1 − 𝑝)1−𝛼 + 𝑝1−𝛼 (1 − 𝑝)𝛼

]
𝛼 = 1 : (2𝑝 − 1) log 𝑝

1−𝑝

R
2
DP

𝑀 ′
1

𝑏

(0)/𝑀 ′
1

𝑏

(−1) 𝛼 > 1 :
1

𝛼−1 log
[
𝛼𝑀 1

𝑏
(𝛼−1)+(𝛼−1)𝑀 1

𝑏
(−𝛼)

2𝛼−1

]
𝛼 = 1 : 𝑀 ′

1

𝑏

(0) +𝑀 1

𝑏
(−1) − 1

Gaussian ∞
𝛼

2𝜎2

In the next set of experiments, we compare the R
2
DP mecha-

nism and Gaussian mechanism in terms of privacy guarantee to

understand how exactly the bad outcomes probability (𝛿) affects the

privacy robustness of a privatized mechanism. Figure 7 (e-h) gives

such a comparison. Specifically, since Rényi differential privacy at

each 𝛼 can be seen as higher-order moments as a way of bounding

the tails of the privacy loss variable [62], we observe that each

value of 𝛼 reveals a snapshot of such a privacy loss. As a tangible

observation, we conclude that the class of optimal 𝜖-differential

privacy mechanisms benefits from a very smaller privacy loss at

smaller moments (which are more decisive in overall protection)

and larger privacy loss at bigger moments.

5.4 Social Network Analysis
We conduct experiments to compare the performance of R

2
DP,

Laplace and two staircase mechanisms based on PINQ queries in

social network analysis. Figure 8 compares the degree distribution

for a real Facebook dataset using Mallows metric (the prior, i.e.,𝑛 =

47, 538 nodes, and 𝑝 = 1 or 2 for computing the distribution distance

using Mallows metric). Again, our results confirm that R
2
DP can

effectively generate PDFs to maximize this utility metric suitable

for social networking analysis. We note that, since the definition

of this metric is similar to ℓ𝑝 metric (Mallows is more empirical,

depending on the number of nodes in the dataset), the results for

this metric display a similar pattern to those for ℓ𝑝 metric depicted

in Figure 4.

5.5 Machine Learning
We obtain our baseline results by applying the Naive Bayes clas-

sifier on the Adult dataset (45K training records and 5K testing

records), the precision and recall results are derived as 0.814 and

0.825, respectively. Then, we evaluate the precision and recall of

R
2
DP and Laplace-based naive classification [72] by varying the

privacy budget for each PINQ query 𝜖 ∈ [0.1, 10] (sensitivity=1)
where two different error bounds 𝛾 = 0.05, 0.1 are specified for

R
2
DP. We have the following observations:

• As shown in Figure 9(a) and 9(b), the R
2
DP-based classifica-

tion is more accurate than the Laplace and staircase mecha-

nisms with the same total privacy budget for all the PINQ

queries 𝜖 . As the privacy budget 𝜖 increases, following our

statistical query experiments, R
2
DP offers a far better pre-

cision/recall compared to the Laplace-based classification

(close to the results without privacy consideration) since it

approaches to the optimal PDF.

• Among the precision/recall results derived with two different

𝛾 in R
2
DP-based classification, for each 𝜖 , one out of the two

specified error bounds (e.g., 𝛾 = 5%) may reach the highest

accuracy (not necessarily the result with the smaller 𝛾 ).

• As shown in Figure 9(c) and 9(d), we can draw similar obser-

vations from the KDDCup99 dataset.

The above experimental results have validated the effectiveness

of integrating R
2
DP to improve the output utility for classification

while ensuring 𝜖-differential privacy. In summary, all the experi-

ments conducted in both statistical queries and real-world applica-

tions have validated the practicality of the R
2
DP framework.

6 RELATEDWORK
Differential privacy [23] is a model for preserving privacy while

releasing the results of various useful functions, such as contingency

tables, histograms and means [20]. Many existing works focus on

improving the utility based on different mechanisms.

Noise Perturbation. Based on the general utility maximization

framework from Ghosh et al. [35], Gupte and Sundararajan [38]

further study the optimal noise probability distributions for single

count queries. Later, Geng el al. [32, 33] demonstrate the optimal

noise distribution has a Staircase-shaped PDF for Laplace mecha-

nism. Furthermore, Balle andWang [4] develop an optimal Gaussian

mechanism in high privacy regime to minimize the noise and in-

crease the utility for queries. Geng et al. [31] further show the

optimal noise distribution is a uniform distribution over Gaussian

mechanism. Moreover, Hardt et al. [41] study the privacy-utility

trade-off for answering a set of linear queries over a histogram,

where the error is defined as the worst expectation of the ℓ2-norm

(identical to variance) of the noise among all possible outputs. Sub-

sequently, Brenner et al. [10] show that, for general query functions,

no universally optimal DP mechanisms exist.
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Figure 8: Mallows metric: R2DP compared to Laplace and Staircase mechanisms for degree distribution (Facebook dataset).
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(a) Precision vs. 𝜖 (UCI Adult)
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Figure 9: Accuracy evaluation for classification (UCI Adult dataset and KDDCUP99 dataset)

Sampling and Aggregation. Sampling and aggregation frame-

works mostly split the database into chunks, and aggregate the

result using a DP algorithm after querying each chunk [64]. To

expand the applicability of output perturbation, Nissim et al. [64]

propose a framework to formally analyze the effect of instance-

based noise. Observing the highly compressible nature of many

real-life data, researchers propose lossy compression techniques to

add noise calibrated to the compressed data. Acs et al. [3] propose

an optimization of Fourier perturbation algorithm that clusters and

exploits the redundancy between bins. Instead of directly adding

noise to histogram counts, it first lossily compresses the data, then

adds noise calibrated to the data. Li et al. [56] propose an algorithm

to partitions a data domain into uniform regions and adapts the

strategy to fit the specific set of range queries to achieve a lower

error rate. Zhang et al. [83] improve the clustering mechanism by

sorting histogram bins based on the noisy counts.

Data Composition. Barak et al. [5] propose transforming the data

into the Fouier domain, which could avoid the violation of con-

sistency for low-order marginals in database tables. As efficiency

is the main bottleneck for this approach when the number of at-

tributes is large, Hay et al. [43] ensure that the error rate does

not grow with the size of a database. The proposed hierarchical

histogram method also achieves a lower error for a fixed domain.

Different from one-dimensional datasets solution proposed by Hay

et al. [43], Xiao et al. [79] propose Privelet that improves accuracy

on datasets with arbitrary dimensions, which could reduce error to

25% compared to 70% as baseline error rate. Cormode et al. [18] ap-

ply quadtrees and kd-trees as new techniques for parameter setting

to improve the accuracy on spatial data. Ding et al. [19] introduce a

general noise-control framework on data cubes. Li et al. [58] unify

the two range queries over histograms into one framework. Other

techniques, such as principal component analysis (PCA), linear

discriminant analysis (LDA) [48], and random projection [15, 80]

are also used to lower the data dimension for reducing the errors.

Cormode et al. [18] apply quadtrees (data-independent) and kd-trees
(data-dependent) to add noise to a histogram output.

Adaptive Queries. In this technique, the improvement of utilities

takes advantage of a known set of queries, for example, Dwork

et al. [27] propose Boosting for Queries algorithm to obtain a bet-

ter accuracy of learning algorithms. Hardt et al. [39, 40] present

multiplicative weights mechanism to improve the efficiency of in-

teractive queries. Instead of polynomial running time [25], this

work achieves a nearly linear running time with a relaxed utility re-

quirement. Yuan et al. [81, 82] propose low-rank mechanism (LRM)

to further improve the adaptive queries. Other techniques such as

correlated noise [63] and sparse vector technique (SVT) [60] are

also used in adaptive queries.

Applications. Many researchers also work on improving the util-

ity for different types of data, such as, the Fourier Perturbation

Algorithm (FPA𝑘 ) [67] in time-series data (e.g., location traces, web

history, and personal health), kd-trees on spatial data [18], and

matrix-valued query [14].
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Summary. Our R2DP framework provides a complementary ap-

proach to those existing works by providing the opportunity of

searching for the maximal utility along an extra dimension. This

framework also enables data recipients to specify their utility re-

quirements and the computed parameter could be incorporated

into existing solutions to further improve utility.

7 CONCLUSION
This paper has proposed the R

2
DP framework as a universal solu-

tion for optimizing a variety of utility metrics requested in different

applications. It can automatically identify a distribution that yields

near-optimal utility, and hence is more practical for emerging ap-

plications. Specifically, we have shown that a differentially private

mechanism could be defined based on a random variable which

is itself distributed according to some parameterized distributions.

We have also shown that such a mechanism could explicitly take

into account both the privacy requirements and the utility require-

ments specified by the data owner and data recipient, respectively.

We have formally analyzed the privacy guarantee of R
2
DP based

on the well-known Laplace mechanism and formally proved the

improvement of utility over the baseline Laplace mechanism. Fur-

thermore, we discuss the potential of applying R2DP to advanced

algorithms, e.g., workload queries. Finally, our experimental results

based on six different utility metrics for statistical queries, machine

learning and social network, as well as one privacy metric, have

demonstrated that R2DP could significantly improve the utility of

differentially private solutions for a wide range of applications.
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APPENDIX
A DEMONSTRATION OF THEOREM 3.1
A Laplace distribution is of a (∝ 𝑥 ·𝑒𝑥 ·𝑡 ) order, where 𝑥 is the inverse

of the scale parameter. Second, since 𝑥 ·𝑒𝑥 ·𝑡 = d𝑒𝑥 ·𝑡

d𝑡
, the cumulative

distribution function (CDF) resulted from randomizing 𝑥 can be

expressed in terms of the expectation E(𝑒𝑥 ·𝑡 ). We note that from

now on, we will simply refer to R
2
DP with Laplace distribution as

the first fold PDF as the R2DP mechanism.

𝑃 𝑅𝑒𝑠𝑢𝑙𝑡 ∈ S =

{ 𝒑

𝟐𝒃𝟏
𝒆
−

𝒒 𝑫 +𝝎

𝒃𝟏 + 
𝟏−𝒑

𝟐𝒃𝟐
𝒆
−

𝒒 𝑫 +𝝎

𝒃𝟐 } × ቊ
1 𝑖𝑓 𝑞 𝐷 + 𝜔 ∈ 𝑆

0 𝑖𝑓 𝑞 𝐷 + 𝜔 ∉ 𝑆

𝑏1

𝑏2

S⊆ ℝ 𝑥~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)

Figure 10: The term in the parenthesis is the derivative of
E(𝑒

1

𝑏
·− |𝑤 |) w.r.t. −|𝑤 |, and hence the above probability can

be expressed in terms of the expectation

Example A.1. Following Example 3.1, for a Bernoulli distributed
scale parameter 𝑏, Figure 10 illustrates the above finding (see Appen-
dix C for proof). It can be verified that the term inside the braces is the
derivative of E(𝑒

1

𝑏
·− |𝑤 |) w.r.t. −|𝑤 |, and hence the above probability

can be expressed in terms of the expectation.

B CASE STUDY PDFS
B.0.1 Discrete Probability Distributions. First, we consider two

different mixture Laplace distributions that can be applied for con-

structing R
2
DP with discrete probability distribution 𝑓𝑏 .

(1) Degenerate distribution. A degenerate distribution is a

probability distribution in a (discrete or continuous) space with

support only in a space of lower dimension [9]. If the degenerate

distribution is uni-variate (involving only a single random variable),

it will be a deterministic distribution and takes only a single value.

Therefore, the degenerate distribution is identical to the baseline

Laplace mechanism as it also assigns the mechanism one single

scale parameter 𝑏0. Specifically, the probability mass function of

the uni-variate degenerate distribution is:

𝑓𝛿,𝑘0 (𝑥) =
{
1 𝑥 = 𝑘0

0 𝑥 ≠ 𝑘0

The MGF for the degenerate distribution 𝛿𝑘0 is given by 𝑀𝑘 (𝑡) =
𝑒𝑡 ·𝑘0 [12]. Using Equation 4, Theorem B.1 gives the same DP guar-

antee as the baseline Laplace mechanism.

Theorem B.1. The R2DP mechanism 𝑀𝑞 (𝑑, 𝜖), 𝜖 ∼ 𝑓𝛿, 1

𝑏
0

(𝜖), is
Δ𝑞
𝑏0

-differentially private.

Obviously, this distribution does not improve the bound in The-

orem 4.5 but shows the soundness of our findings.

(2) Bernoulli distribution. The probability mass function of

this distribution, over possible outcomes 𝑘 , is

𝑓𝐵 (𝑘 ;𝑝) =
{
𝑝 if 𝑘 = 1,

1 − 𝑝 if 𝑘 = 0.

Note that the binary outcomes 𝑘 = 0 and 𝑘 = 1 can be mapped to

any two outcomes 𝑋0 and 𝑋1, respectively. Therefore, we consider

the following Bernoulli outcomes

𝑓𝐵,𝑋0,𝑋1
(𝑋 ;𝑝) =

{
𝑝 if 𝑋 = 𝑋1,

1 − 𝑝 if 𝑋 = 𝑋0 .

The MGF for Bernoulli distribution 𝑓𝐵,𝑋0,𝑋1
(𝑋 ;𝑝) is 𝑀𝑋 (𝑡) = 𝑝 ·

𝑒𝑡 ·𝑋0 + (1 − 𝑝) · 𝑒𝑡 ·𝑋1
[12]. We now derive the precise differential

privacy guarantee of an R
2
DP mechanism with its scale parameter

randomized according to a Bernoulli distribution.

Theorem B.2. The R2DP mechanism𝑀𝑞 (𝑑, 𝜖), 𝜖 ∼ 𝑓𝐵, 1

𝑏
0

, 1

𝑏
1

(𝜖 ;𝑝),

satisfies ln[𝑝 · 𝑒
Δ𝑞
𝑏
0 + (1 − 𝑝) · 𝑒

Δ𝑞
𝑏
1 ] differential privacy.

This bound is exactly the mean of 𝑒𝜖 (𝑏) given in Theorem 4.5.

B.0.2 Continuous Probability Distributions. We now investigate

three compound Laplace distributions.

(1) Gamma distribution. The gamma distribution is a two-

parameter family of continuous probability distributions with a

shape parameter 𝑘 > 0 and a scale parameter 𝜃 . Besides the gener-

ality, the gamma distribution is the maximum entropy probability

distribution (both w.r.t. a uniform base measure and w.r.t. a 1/𝑥
base measure) for a random variable 𝑋 for which E(𝑋 ) = 𝑘𝜃 = 𝛼/𝛽
is fixed and greater than zero, and E[ln(𝑋 )] = 𝜓 (𝑘) + ln(𝜃 ) =

𝜓 (𝛼) − ln(𝛽) is fixed (𝜓 is the digamma function). Therefore, it may

provide a relatively higher privacy-utility trade-off in comparison

to the other candidates [45, 50]. A random variable𝑋 that is gamma-

distributed with shape 𝛼 and rate 𝛽 is denoted by 𝑋 ∼ Γ(𝑘, 𝜃 ) and
the corresponding PDF is

𝑓Γ (𝑋 ;𝑘, 𝜃 )=
𝑥𝑘−1𝑒−

𝑥
𝜃

Γ(𝑘) · 𝜃𝑘
for 𝑋 > 0 and 𝑘, 𝜃 > 0,

where Γ(𝛼) is the gamma function. We now investigate the differen-

tial privacy guarantee provided by assuming that the reciprocal of

the scale parameter𝑏 in Laplace mechanism is distributed according

to the gamma distribution (see Appendix C for the proof).

Theorem B.3. The R2DP mechanism 𝑀𝑞 (𝑑, 𝜖), 𝜖 ∼ 𝑓Γ (𝜖;𝑘, 𝜃 ),
satisfies

(
(𝑘 + 1) · ln(1 + Δ𝑞 · 𝜃 )

)
differential privacy.

We now apply the necessary condition given in Equation 8 (see

Appendix C for the proof).

Lemma B.4. R2DP using Gamma distribution can satisfy the nec-
essary condition in Equation 8.

Therefore, Gamma distribution may improve over the baseline,

and this can be computed by optimizing the privacy-utility trade-

off using the Lagrange multiplier function in Equation 6. Also, our

numerical results show that, this distribution is more effective for

large 𝜖 (weaker privacy guarantees).
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(2) Uniform distribution. In probability theory and statistics,

the continuous uniform distribution or rectangular distribution is

a family of symmetric probability distributions such that for each

member of the family, all intervals of the same length on the support

of the distribution are equally probable. The support is defined by

the two parameters, 𝑎 and 𝑏, which are the minimum and maximum

values. The distribution is often abbreviated as 𝑈 (𝑎, 𝑏), which is

the maximum entropy probability distribution for a random vari-

able 𝑋 under no constraint; other than that, it is contained in the

distribution’s support [45, 50]. The MGF for𝑈 (𝑎, 𝑏) is

𝑀𝑋 (𝑡) =
{
𝑒𝑡𝑏−𝑒𝑡𝑎
𝑡 (𝑏−𝑎) for 𝑡 ≠ 0,

1 for for 𝑡 = 0.

Using Theorem 4.1, we now drive the precise differential privacy

guarantee of an R
2
DP mechanism for uniform distribution𝑈 (𝑎, 𝑏).

Theorem B.5. The R2DP mechanism𝑀𝑞 (𝑑, 𝜖), 𝜖 ∼ 𝑓𝑈 (𝑎,𝑏) (𝜖), is
ln

[ 𝛼2−𝛽2
2( (1+𝛽)𝑒−𝛽−(1+𝛼)𝑒−𝛼 )

]
-differentially private, where 𝛼 = 𝑎 · Δ𝑞

and 𝛽 = 𝑏 · Δ𝑞.
We now apply the necessary condition given in Equation 8. One

can easily verify that the inequality holds for an infinite number of

settings, e.g., 𝑎 = 0.5, 𝑏 = 9 and Δ𝑞 = 1.2.

Lemma B.6. R2DP using uniform distribution can satisfy the nec-
essary condition in Equation 8.

Therefore, R
2
DP using uniform distribution may improve over

the baseline, and this can be computed by optimizing the privacy-

utility trade-off using the Lagrange multiplier function in Equa-

tion 6. Also, our numerical results show that, this distribution can

also be effective for both small and large 𝜖 .

(3) Truncated Gaussian distribution. The last distribution we
consider is the Truncated Gaussian distribution. This distribution

is derived from that of a normally distributed random variable by

bounding the random variable from either below or above (or both).

Therefore, we can benefit from the numerous useful properties

of Gaussian distribution, by truncating the negative region of the

Gaussian distribution. Suppose 𝑋 ∼ N(𝜇, 𝜎2) has a Gaussian dis-

tribution and lies within the interval 𝑋 ∈ (𝑎, 𝑏), −∞ ≤ 𝑎 < 𝑏 ≤ ∞.
Then, 𝑋 conditional on 𝑎 < 𝑋 < 𝑏 has a truncated Gaussian distri-

bution with the following probability density function

𝑓N𝑇 (𝑋 ; 𝜇, 𝜎, 𝑎, 𝑏)=
𝜙 (𝑋−𝜇𝜎 )

𝜎 ·
(
Φ( 𝑏−𝜇𝜎 ) − Φ(

𝑎−𝜇
𝜎 )

) for 𝑎 ≤ 𝑥 ≤ 𝑏

and by 𝑓N𝑇 = 0 otherwise. Here, 𝜙 (𝑥) = 1√
2𝜋 ·𝑒

− 𝑥2

2 and Φ(𝑥) =
1−𝑄 (𝑥) are PDF and CDF of the standard Gaussian distribution, re-

spectively. Next, using Theorem 4.1, we give the differential privacy

guarantee provided by the mechanism assuming that the reciprocal

of 𝑏 is distributed according to the truncated Gaussian distribution.

TheoremB.7. The R2DPmechanismM𝑞 (𝑑, 𝜖), 𝜖 ∼ 𝑓N𝑇 (𝜖 ; 𝜇, 𝜎, 𝑎, 𝑏),
satisfies 𝜖𝑁𝑇 - differential privacy, where

𝜖𝑁𝑇 = ln


𝜇 +

𝜎 · (𝜙 (𝛼) − 𝜙 (𝛽))
(Φ(𝛽) − Φ(𝛼))

d𝑀𝑁𝑇 (𝑡)
d𝑡

|𝑡 = −Δ𝑞


(9)

in which 𝜙 (·) is the probability density function of the standard
normal distribution, 𝜙 (·) is its cumulative distribution function and
𝛼 =

𝑎−𝜇
𝜎 and 𝛽 =

𝑏−𝜇
𝜎 .

Lemma B.8 (see Appendix C for the proof). R2DP using trun-
cated Gaussian distribution can satisfy the necessary condition in
Equation 8.

Therefore, truncated Gaussian distributionmay improve over the

baseline, and this can be computed by optimizing the privacy-utility

trade-off using the Lagrange multiplier function in Equation 6. In

particular, our numerical results show that, this distribution can

also be effective for smaller 𝜖 (stronger privacy guarantees).

C PROOFS
Example A.1. Following Example 3.1, for a Bernoulli distributed

scale parameter 𝑏, we have

P(M𝑞 (𝑑,𝑏) ∈ 𝑆)

=

∫
R

𝑝

2𝑏1
· 1𝑆 {𝑞(𝑑) +𝑤}𝑒

−|𝑤 |
𝑏
1 + 1 − 𝑝

2𝑏2
· 1𝑆 {𝑞(𝑑) +𝑤}𝑒

−|𝑤 |
𝑏
2 𝑑𝑤

=

∫
R

( 𝑝
2𝑏1
· 𝑒
−|𝑤 |
𝑏
1 + 1 − 𝑝

2𝑏2
· 𝑒
−|𝑤 |
𝑏
2

)
1𝑆 {𝑞(𝑑) +𝑤}𝑑𝑤

where 1{·} denotes the indicator function. It can be verified that

the term in the braces is the derivative of E(𝑒
1

𝑏
·− |𝑤 |) w.r.t. −|𝑤 |,

and hence the above probability can be expressed in terms of the

expectation. □

Theorem 3.1. For an R
2
DP Laplace mechanism and ∀𝑆 ⊂ R

measurable and dataset 𝑑 in D, we have

P(M𝑞 (𝑑, 𝑏) ∈ 𝑆)

=

∫
R≥0

𝑓 (𝑏) 1
2𝑏

∫
R
1𝑆 {𝑞(𝑑) +𝑤}𝑒

−|𝑤 |
𝑏 𝑑𝑤 𝑑𝑏

=

∫
R≥0

𝑔(𝑢)𝑢
2

∫
R
1𝑆 {𝑞(𝑑) +𝑤}𝑒−|𝑤 | ·𝑢 𝑑𝑤 𝑑𝑢

=

∫
R
1𝑆 {𝑞(𝑑) +𝑤}

∫
R≥0

𝑔(𝑢)𝑢
2

𝑒−|𝑤 | ·𝑢 𝑑𝑢 𝑑𝑤

=

∫
R
1𝑆 {𝑞(𝑑) +𝑤}

1

2

𝑑𝑀𝑢 (𝑡)
𝑑𝑡

|𝑡=−|𝑤 | 𝑑𝑤

= 1

2

∫
𝑆

𝑑𝑀𝑢 (𝑡)
𝑑𝑡

|𝑡=−|𝑥−𝑞 (𝑑) |𝑑𝑥 (10)

= 1

2
·
[
−𝑀𝑢 (−|𝑥 − 𝑞(𝑑) |) |𝑆≥𝑞 (𝑑 ) +𝑀𝑢 (−|𝑥 − 𝑞(𝑑) |) |𝑆<𝑞 (𝑑 )

]
(11)

where 𝑢 = 𝑏−1, is reciprocal of random variable 𝑏 and 𝑔(𝑢) =
1

𝑢2
· 𝑓 ( 1𝑢 ). Note that𝑀𝑢 (𝑡) is the MGF of random variable 𝑢 which

is identical with𝑀 1

𝑏
(𝑡). □

Theorem 4.1. To prove this theorem, we first need to give two

lemmas on the properties of R
2
DP Laplace mechanism and MGFs.

Lemma C.1. The R2DP mechanismM𝑞 (𝑑,𝑏), is

ln


max

∀𝑥 ∈R


d𝑀 1

𝑏
(𝑡)

d𝑡
|𝑡=−|𝑥−𝑞 (𝑑) |

d𝑀 1

𝑏
(𝑡)

d𝑡
|𝑡=−|𝑥−𝑞 (𝑑′) |



-differentially private. (12)
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Proof. According to Equation 10,

P(M𝑞 (𝑑,𝑏) ∈ 𝑆) = 1

2

∫
𝑆

d𝑀 1

𝑏
(𝑡)

d𝑡
|𝑡=−|𝑥−𝑞 (𝑑) |𝑑𝑥

= 1

2

∫
𝑆

d𝑀 1

𝑏
(𝑡)

d𝑡
|𝑡=−|𝑥−𝑞 (𝑑) |

d𝑀 1

𝑏
(𝑡)

d𝑡
|𝑡=−|𝑥−𝑞 (𝑑′) |

·
d𝑀 1

𝑏
(𝑡)

d𝑡
|𝑡=−|𝑥−𝑞 (𝑑′) |𝑑𝑥

Denote by

𝑒𝜖 = sup


d𝑀 1

𝑏
(𝑡)

d𝑡
|𝑡=−|𝑥−𝑞 (𝑑) |

d𝑀 1

𝑏
(𝑡)

d𝑡
|𝑡=−|𝑥−𝑞 (𝑑′) |

,∀𝑥 ∈ 𝑆

,
⇒ P(M𝑞 (𝑑, 𝑏) ∈ 𝑆) ≤ 𝑒𝜖 · P(M𝑞 (𝑑 ′, 𝑏) ∈ 𝑆)

and the choice of 𝑆 = R concludes the proof. □

Next, we show the log-convexity property of the first derivative

of moment generating functions.

Lemma C.2. First derivative of a moment generating function

defined by
d𝑀 (𝑡)
d𝑡

= E(𝑧 · 𝑒𝑧𝑡 ) is log-convex.

Proof. For real- or complex-valued random variables 𝑋 and 𝑌 ,

Hölder’s inequality [1] reads;E( |𝑋𝑌 |) ≤ (E( |𝑋 |)𝑝 )1/𝑝 ·(E( |𝑌 |)𝑞)1/𝑞
for any 1 < 𝑝, 𝑞 < ∞ with 1/𝑝 + 1/𝑞 = 1. Next, for all 𝜃 ∈ (0, 1)
and 0 ≤ 𝑥1, 𝑥2 < ∞, define 𝑋 = 𝑧𝜃 · 𝑒𝜃𝑥1𝑧 , 𝑌 = 𝑧1−𝜃 · 𝑒 (1−𝜃 )𝑥2𝑧 and

𝑝 = 1/𝜃 , 𝑞 = 1/(1 − 𝜃 ). Therefore, we have

E(𝑧 · 𝑒 (𝜃𝑥1+(1−𝜃 )𝑥2𝑧) ≤ E(𝑧 · 𝑒𝑥1𝑧)𝜃 · E(𝑧 · 𝑒𝑥2𝑧)1−𝜃

which shows the definition of log-convexity holds for𝑀 ′(𝑡). □

Back to the original proof, following theDP guarantee in LemmaC.1,

and using triangle inequality, we have

𝑒𝜖 = max

∀𝑥 ∈R

{
E(𝜖 ·𝑒 (−|𝑥−𝑞 (𝑑 ) |·𝜖 ) )
E(𝜖 ·𝑒 (−|𝑥−𝑞 (𝑑′) |·𝜖 ) )

}
≤ max

∀𝑡 ∈R≤0

{
E(𝜖 ·𝑒 (𝑡 ·𝜖 ) )

E(𝜖 ·𝑒 ( (𝑡−Δ𝑞) ·𝜖 ) )

}
Next, we show that 𝑓 (𝑡) = E(𝜖 ·𝑒 (𝑡 ·𝜖 ) )

E(𝜖 ·𝑒 ( (𝑡−Δ𝑞) ·𝜖 ) ) is non-decreasing w.r.t. 𝑡 .

For this purpose, we must show that

𝑓 ′(𝑡) = 𝑀 ′′(𝑡) ·𝑀 ′(𝑡 − Δ𝑞) −𝑀 ′(𝑡) ·𝑀 ′′(𝑡 − Δ𝑞)
𝑀 ′2 (𝑡 − Δ𝑞)

is non-negative. However, this is equivalent to show that
𝑀′′ (𝑡 )
𝑀′ (𝑡 ) ≥

𝑀′′ (𝑡−Δ𝑞)
𝑀′ (𝑡−Δ𝑞) or more generally

𝑀′′ (𝑡 )
𝑀′ (𝑡 ) is not-decreasing. However, fol-

lowing the log-convexity of first𝑀 ′(𝑡), the logarithmic derivative

of 𝑀 ′(𝑡) denoted by
𝑀′′ (𝑡 )
𝑀′ (𝑡 ) is non-decreasing. Thus, for all 𝑡 < 0,

𝑓 (𝑡) ≤ 𝑓 (0), and evaluating 𝑒𝜖 (𝑡 ) at 𝑡 = 0, concludes our proof. □

Theorem 4.5. Following Theorem 2.2, an 𝜖-DP Laplace mech-

anism is (𝛾, 𝑒
−𝛾
𝑏 (𝜖 ) )-useful for all 𝛾 ≥ 0, where 𝑏 (𝜖) = Δ𝑞

𝜖 . There-

fore, for the usefulness of the baseline Laplace mechanism at 𝜖 =

ln[E 1

𝑏
(𝑒𝜖 (𝑏) )], we have

𝑒

−𝛾 ·ln[E
1

𝑏

(𝑒𝜖 (𝑏) ) ]

Δ𝑞 =
(
E 1

𝑏
(𝑒𝜖 (𝑏) )

) −𝛾
Δ𝑞 =

(
E 1

𝑏
(𝑒

Δ𝑞
𝑏 )

) −𝛾
Δ𝑞 ≤ E 1

𝑏

(
𝑒
−𝛾
𝑏
)

where the last inequality relation is verified by Jensen inequal-

ity [46] as 𝑔(𝑥) = 𝑥
−𝛾
𝑏 is a convex function. Recall the following

Jensen inequality: Let (Ω,𝔉, P) be a probability space, 𝑋 an inte-

grable real-valued random variable and 𝑔 a convex function. Then

𝑔(E(𝑋 )) ≤ E(𝑔(𝑋 ))

Therefore,

1 − 𝑒
−𝛾 ·ln[E

1

𝑏

(𝑒𝜖 (𝑏) ) ]

Δ𝑞 ≥ 1 − E 1

𝑏

(
𝑒
−𝛾
𝑏
)
= 𝑈 (ln[E 1

𝑏
(𝑒𝜖 (𝑏) )],Δ𝑞,𝛾)

This completes the proof. □

Theorem B.1. For
1

𝑏
∼ 𝑓𝛿, 1

𝑏
0

( 1
𝑏
), the MGF is given by𝑀 1

𝑏
(𝑡) =

𝑒
𝑡
𝑏
0 . Following Theorem C.1, one can write

𝑒𝜖 = max

∀𝑥 ∈R


1

𝑏
0

·𝑒
−|𝑥−𝑞 (𝑑 ) |

𝑏
0

1

𝑏
0

·𝑒
−|𝑥−𝑞 (𝑑′) |

𝑏
0

 = max

∀𝑥 ∈R

{
𝑒
|𝑥−𝑞 (𝑑′) |−|𝑥−𝑞 (𝑑 ) |

𝑏
0

}
≤ max

∀𝑥 ∈R

{
𝑒
|𝑞 (𝑑 )−𝑞 (𝑑′) |

𝑏
0

}
= 𝑒

Δ𝑞
𝑏
0

where the last inequality is from triangle inequality. □

Theorem B.2. The R
2
DP Laplace mechanism M𝑞 (𝑑, 𝑏), 1

𝑏
∼

𝑓𝐵, 1

𝑏
0

, 1

𝑏
1

( 1
𝑏
;𝑝) returns with probability 𝑝 , a Laplace mechanism

with scale parameter 𝑏1, and with probability 1−𝑝 another Laplace

mechanism with scale parameter 𝑏2. To this end, we are looking for

𝑒𝜖 = max

∀𝑥 ∈R


𝑝

𝑏
0

·𝑒
−|𝑥−𝑞 (𝑑 ) |

𝑏
0 + 1−𝑝

𝑏
1

·𝑒
−|𝑥−𝑞 (𝑑 ) |

𝑏
1

𝑝

𝑏
0

·𝑒
−|𝑥−𝑞 (𝑑′) |

𝑏
0 + 1−𝑝

𝑏
1

·𝑒
−|𝑥−𝑞 (𝑑′) |

𝑏
1


Therefore, using triangle inequality, we have

𝑒𝜖1 = max

∀𝑆 ∈R

{
𝑝 ·𝑒

−|𝑥−𝑞 (𝑑 ) |
𝑏
0 +(1−𝑝) ·𝑒

−|𝑥−𝑞 (𝑑 ) |
𝑏
1

𝑝 ·𝑒
−|𝑥−𝑞 (𝑑′) |

𝑏
0 +(1−𝑝) ·𝑒

−|𝑥−𝑞 (𝑑′) |
𝑏
1

}

≤ max

∀𝑥≥𝑞 (𝑑)

 𝑝 ·𝑒
Δ𝑞−|𝑥−𝑞 (𝑑′) |

𝑏
0 +(1−𝑝) ·𝑒

Δ𝑞+−|𝑥−𝑞 (𝑑′) |
𝑏
1

𝑝 ·𝑒
−|𝑥−𝑞 (𝑑′) |

𝑏
0 +(1−𝑝) ·𝑒

−|𝑥−𝑞 (𝑑′) |
𝑏
1


Let us make the substitutions𝑋 = 𝑒

−|𝑥−𝑞 (𝑑′) |
𝑏
0 , 𝑎 = 𝑒

Δ𝑞
𝑏
0 and k=

𝑏0
𝑏1

> 1.

Hence, we have

𝑒𝜖 ≤ max

∀𝑋 ∈(0,1)

{
𝑝 ·𝑎 ·𝑋+(1−𝑝) ·(𝑎 ·𝑋 )𝑘

𝑝 ·𝑋+(1−𝑝) ·𝑋𝑘

}
To obtain 𝑒𝜖 , we need to find all the critical points of 𝑒𝜖1 (𝑋 ) =
𝑝 ·𝑎 ·𝑋+(1−𝑝) ·(𝑎 ·𝑋 )𝑘

𝑝 ·𝑋+(1−𝑝) ·𝑋𝑘 . However, the critical points of a fractional func-

tion are the roots of the numerator of its derivative. Hence, suppose

d𝑒𝜖 (𝑋 )
d𝑋

=
𝑁 (𝑋 )
𝐷 (𝑋 )

then

⇒ 𝑁 (𝑋 ) =
(
𝑝 · 𝑎 + (1 − 𝑝) · 𝑘 · 𝑎 · (𝑎 · 𝑋 )𝑘−1

)
·
(
𝑝 · 𝑋 + (1 − 𝑝) · 𝑋𝑘

)
−
(
𝑝 + (1 − 𝑝) · 𝑘 · 𝑋𝑘−1)

·
(
𝑝 · 𝑎 · 𝑋 + (1 − 𝑝) · (𝑎 · 𝑋 )𝑘

)
= 𝑝 · (1 − 𝑝) · (𝑘 − 1) · (𝑎𝑘−1 − 1) · 𝑋𝑘
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However, all the terms in the last expression are strictly positive.

Therefore, the only critical points are 𝑋 = 0 and 𝑋 = 1 and as the

function is strictly increasing,

𝑒𝜖 ≤ 𝑒𝜖 (1) = 𝑝 · 𝑎 + (1 − 𝑝) · (𝑎)𝑘

= 𝑝 · 𝑒
Δ𝑞
𝑏
0 + (1 − 𝑝) · 𝑒

Δ𝑞
𝑏
1

which is the bound in the Theorem. □

Theorem B.3. For a Gamma distribution with shape parameters

𝑘 and scale parameters 𝜃 , the MGF at point 𝑡 is given as (1−𝜃 · 𝑡)−𝑘 .
Since

1

𝑏
∼ 𝑓Γ ( 1𝑏 ;𝑘, 𝜃 ), following Theorem C.1, one can write

𝑒𝜖 = max

∀𝑥 ∈R

{
𝑘 ·𝜃 · (1+𝜃 · |𝑥−𝑞 (𝑑) |)−𝑘−1
𝑘 ·𝜃 · (1+𝜃 · |𝑥−𝑞 (𝑑′) |)−𝑘−1

}
⇒ 𝜖 = max

∀𝑥 ∈R

{
(𝑘 + 1) · ln

[
(1+𝜃 · |𝑥−𝑞 (𝑑′) |)
(1+𝜃 · |𝑥−𝑞 (𝑑) |)

]}
to find the maximum of the ln term, denote by𝑋 = 1+𝜃 · |𝑥 −𝑞(𝑑) |).
Moreover, since |𝑥 − 𝑞(𝑑 ′) | ≤ |𝑥 − 𝑞(𝑑) | + Δ𝑞, we have

⇒ 𝜖 ≤ max

∀𝑋 ≥1

{
𝑋 + Δ𝑞 · 𝜃

𝑋

}
However, since

∀𝑋 ≥ 1,
𝑋 + Δ𝑞 · 𝜃

𝑋

is strictly decreasing, we have

⇒ 𝜖 = (𝑘 + 1) · ln
[
1 + 𝜃 · Δ𝑞

]
This completes the proof. □

Lemma B.4. We need to show that there exist 𝑘 and 𝜃 such that

(𝑘 + 1) · ln(1+Δ𝑞 ·𝜃 ) < −𝑘 · ln(1−Δ𝑞 ·𝜃 ) , 𝜃 < 1

Δ𝑞 . Given 𝜃 = 1

2Δ𝑞 ,

we need to show that ∃𝑘, 𝑘 · ln(2) > (𝑘 + 1) · ln(1.5), which always

holds for all 𝑘 > 1.4094. □

Lemma B.8. Using exhaustive search, suppose 𝜇 = 0.5223,𝜎 =

1.5454, 𝑎 = 0.5223 and for 𝜖 = 1.1703 and Δ𝑞 = 0.6, we will get

ln(𝑀N𝑇 (Δ𝑞)) = 1.2417. □

D LAGRANGE MULTIPLIER FUNCTION
The Lagrange Multiplier Function (all possible linear combinations

of the Gamma, uniform and truncated Gaussian distributions) is:

L(𝑎1, 𝑎2, 𝑎3, 𝑘, 𝜃, 𝑎𝑢 , 𝑏𝑢 , 𝜇, 𝜎, 𝑎N𝑇 , 𝑏N𝑇 ,Λ) (13)

= 𝑀Γ (𝑘,𝜃 ) (−𝑎1𝛾) ·𝑀𝑈 (𝑎𝑢 ,𝑏𝑢 ) (−𝑎2𝛾)

·𝑀N𝑇 (𝜇,𝜎,𝑎N𝑇 ,𝑏N𝑇 )
(−𝑎3𝛾) + Λ · (ln

[
N

D

]
− 𝜖)

where the numerator and the denominator N, D are

N =

(𝑎1 · 𝑘 · 𝜃 ) + (𝑎2 · 𝑎+𝑏
2
) + (𝑎3 · (𝜇 + (

𝜎 · 𝜙 (𝛼) − 𝜙 (𝛽))
(Φ(𝛽) − Φ(𝛼)) ))

D = 𝑎1 ·𝑀 ′Γ (𝑘,𝜃 ) (−𝑎1 · Δ𝑞) ·𝑀𝑈 (𝑎𝑢 ,𝑏𝑢 ) (−𝑎2 · Δ𝑞)
·𝑀N𝑇 (𝜇,𝜎,𝑎N𝑇 ,𝑏N𝑇 )

(−𝑎3 · Δ𝑞)
+𝑎2 ·𝑀Γ (𝑘,𝜃 ) (−𝑎1 · Δ𝑞) ·𝑀 ′𝑈 (𝑎𝑢 ,𝑏𝑢 ) (−𝑎2 · Δ𝑞)

·𝑀N𝑇 (𝜇,𝜎,𝑎N𝑇 ,𝑏N𝑇 )
(−𝑎3 · Δ𝑞)

+𝑎3 ·𝑀Γ (𝑘,𝜃 ) (−𝑎1 · Δ𝑞) ·𝑀𝑈 (𝑎𝑢 ,𝑏𝑢 ) (−𝑎2 · Δ𝑞)
·𝑀 ′N𝑇 (𝜇,𝜎,𝑎N𝑇 ,𝑏N𝑇 )

(−𝑎3 · Δ𝑞)

E NUMERICAL ANALYSIS
We also demonstrate the effectiveness of R

2
DP through numerical

results based on Algorithm 1 (the ensemble R
2
DP algorithm). In

particular, Figure 11 depicts the corresponding usefulness (the prob-

ability of the results to be within a pre-specified error bound) of the

R
2
DP, the Laplace and the Staircase mechanisms. Figure 11 clearly

demonstrates the fact that the R
2
DP mechanism can significantly

improve both already considered to be competing mechanisms.

In particular, we observe the power of the R
2
DP mechanism in

generating very high utility results, e.g., results with more than

0.8 probability fallen inside only 𝛾 = 0.1 error-bound, owing to

automatically searching a large search space of PDFs.

F R2DP AND OTHER DP MECHANISMS
In this section we briefly discuss the application of the R

2
DP frame-

work in two other well-known baseline DP mechanisms.

F.1 R2DP Exponential Mechanism
The exponential mechanism was designed for situations in which

we wish to choose the “best” response but adding noise directly

to the computed quantity can completely destroy its value, such

as setting a price in an auction, where the goal is to maximize

revenue, and adding a small amount of positive noise to the optimal

price (in order to protect the privacy of a bid) could dramatically

reduce the resulting revenue [26]. The exponential mechanism is the

natural building block for answering queries with arbitrary utilities

(and arbitrary non-numeric range), while preserving differential

privacy. Given some arbitrary range R, the exponential mechanism

is defined with respect to some utility function 𝑢 : N |X | × R → R,
which maps database/output pairs to utility scores. Intuitively, for

a fixed database 𝑥 , the user prefers that the mechanism outputs

some element of R with the maximum possible utility score. Note

that when we talk about the sensitivity of the utility score 𝑢 :

N |X | ×R → R, we care only about the sensitivity of 𝑢 with respect

to its database argument; it can be arbitrarily sensitive in its range

argument:

Δ𝑢 ≡ max

𝑟 ∈R
max

𝑥,𝑦:∥𝑥−𝑦 ∥≤1
|𝑢 (𝑥, 𝑟 ) − 𝑢 (𝑦, 𝑟 ) |.

The intuition behind the exponential mechanism is to output each

possible 𝑟 ∈ R with probability proportional to exp(𝜖𝑢 (𝑥, 𝑟 )/Δ𝑢)
and so the privacy loss is approximately:

ln

(𝑒𝑥𝑝 (𝜖𝑢 (𝑥, 𝑟 )/Δ𝑢)
𝑒𝑥𝑝 (𝜖𝑢 (𝑦, 𝑟 )/Δ𝑢)

)
= 𝜖 [𝑢 (𝑥, 𝑟 ) − 𝑢 (𝑦, 𝑟 )/Δ𝑢] ≤ 𝜖 (14)

The exponential mechanism is a canonical 𝜖-DP mechanism,

meaning that it describes a class of mechanisms that includes all
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Figure 11: The R2DP mechanism significantly outperforms the competing Laplace and the staircase mechanisms in maximiz-
ing the usefulness metric (an example of a utility metric with no known optimal PDF).

possible differentially private mechanisms. However, the exponen-

tial mechanism can define a complex distribution over a large ar-

bitrary domain, and so it may not be possible to implement the

exponential mechanism efficiently when the range of 𝑢 is super-

polynomially large in the natural parameters of the problem [26].

This is the main restrictive aspect of the exponential mechanism

against leveraging different accuracy metrics. However, the expo-

nential mechanism can benefit from the additional randomization

of privacy budget, to handle the complexity (excessive sharpness) of

the defined probability distribution. In particular, as we mentioned

earlier, compound (or mixture) distributions arise naturally where

a statistical population contains two or more sub-population which

is the case for the exponential mechanism. Thus we motivate the

application of the R
2
DP framework in designing exponential mech-

anisms with rather smooth but accurate distributions around each

element in the range of 𝑢. However, further discussion on R
2
DP

exponential mechanism requires formal analysis, e.g., deriving the

DP guarantee of such a mechanism.

F.2 R2DP and Differential Privacy Relaxations
R
2
DP can also be studied under various relaxations of differen-

tial privacy, e.g., (𝜖, 𝛿)-differential privacy or Rényi Differential

Privacy [62] which is a privacy notion based on the Rényi diver-

gence [73]. These relaxations allow suppressing the long tails of the

mechanism’s distribution where pure 𝜖-differential privacy guar-

antees may not hold. Instead, they offer asymptotically smaller

cumulative loss under composition and allow greater flexibility in

the selection of privacy preserving mechanisms [62]. In the fol-

lowing, we briefly discuss the application of R
2
DP in two of such

relaxed notions of the differential privacy .

F.2.1 R2DP Gaussian Mechanism. A relaxation of 𝜖-differential

privacy allows an additional bound 𝛿 in its defining inequality:

Definition F.1 ((𝜖, 𝛿)-differential privacy [21]). A random-
ized mechanism𝑀 : D × Ω → R is (𝜖, 𝛿)-differentially private if for
all adjacent 𝑑, 𝑑 ′ ∈ D, we have

P(𝑀 (𝑑) ∈ 𝑆) ≤ 𝑒𝜖P(𝑀 (𝑑 ′) ∈ 𝑆) + 𝛿, ∀𝑆 ⊂ R. (15)

This definition quantifies the allowed deviation (𝛿) for the output

distribution of a 𝜖-differentially private mechanism, when a sin-

gle individual is added or removed from a dataset. A differentially

private mechanism proposed in [21] modifies an answer to a numer-

ical query by adding the independent and identically distributed

zero-mean Gaussian noise.

Given the definition of the Q-function Q(𝑥) := 1√
2𝜋

∫ ∞
𝑥
𝑒−

𝑢2

2 𝑑𝑢,

we have the following theorem [21, 53].

Theorem F.1. Let 𝑞 : D → R be a query and 𝜖 > 0. Then the
Laplace mechanismM𝑞 : D×Ω → R defined byM𝑞 (𝑑) = 𝑞(𝑑) +𝑤 ,

with𝑤 ∼ N
(
0, 𝜎2

)
, where 𝜎 ≥ Δ𝑞

2𝜖 (𝐾 +
√
𝐾2 + 2𝜖) and 𝐾 = Q−1 (𝛿),

satisfies (𝜖, 𝛿)-DP.
We define 𝜅𝛿,𝜖 = 1

2𝜖 (𝐾 +
√
𝐾2 + 2𝜖), then the standard deviation

𝜎 in Theorem F.1 can be written as 𝜎 (𝛿, 𝜖) = 𝜅𝛿,𝜖Δ𝑞. It can be

shown that 𝜅𝛿,𝜖 behaves roughly as 𝑂 (ln(1/𝛿))1/2/𝜖 . For example,

to ensure (𝜖, 𝛿)-differential privacy with 𝜖 = ln(2) and 𝛿 = 0.05, the

standard deviation of the injected Gaussian noise should be about

2.65 times the ℓ1-sensitivity of 𝑞.
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Theorem F.2. The Gaussian Mechanism in Theorem F.1 is (𝛾, 2 ·
Q
( 𝛾

𝜎 (𝛿,𝜖)
)
)-useful.

Similar to our R
2
DP Laplace mechanism, we can formulate an op-

timization problem for the R
2
DP model using Gaussian mechanism.

Therefore, using Theorems F.1 and F.2, we have the following.

Corollary F.3. Denote by𝑢, the set of parameters for a probability
distribution 𝑓𝜎 . Then, the optimal usefulness of an R2DP Gaussian
mechanism utilizing 𝑓𝜎 , at each quadruplet (𝜖, 𝛿,Δ𝑞,𝛾) is

𝑈𝑓 (𝜖, 𝛿,Δ𝑞,𝛾) = max

𝑢∈R|𝑢 |
(
1 − 2 · E𝜎 (𝑄

( 𝛾

𝜎 (𝛿,𝜖)
) )
)

subject to (16)

max

∀𝑆 ∈R

{
P(M𝑞 (𝑑,𝜎) ∈𝑆)
P(M𝑞 (𝑑′,𝜎) ∈𝑆)

}
= 𝜖,

E𝜎 (𝑄 (𝜖𝜎 − 1

2𝜎 )) = 𝛿

F.2.2 R2DP and Rényi Differential Privacy. Despite its notable ad-
vantages in numerous applications, the definition of (𝜖, 𝛿)-differential

privacy has the following two limitations.

First, (𝜖, 𝛿)-differential privacy was applied to the analysis of the
Gaussian mechanism [21]. In contrast to the Laplace mechanism

(whose privacy guarantee is characterized tightly and accurately

by 𝜖-differential privacy), a single Gaussian mechanism satisfies a

curve of (𝜖 (𝛿), 𝛿)-differential privacy definitions [21]. Picking any

one point on this curve may leave out important information about

the mechanism’s actual behavior [62].

Second, (𝜖, 𝛿)-differential privacy also has limitations on the

composition of differential privacy [61]. By relaxing the guarantee

to (𝜖, 𝛿)-differential privacy, advanced composition allows tighter

analyses for compositions of (pure) differentially private mecha-

nisms. Iterating this process, however, quickly leads to a combina-

torial explosion of parameters, as each application of an advanced

composition theorem leads to a wide selection of possibilities for

(𝜖 (𝛿), 𝛿)-differentially private guarantees.

To address these shortcomings, Rényi differential privacy was

proposed as a natural relaxation of differential privacy in [62].

Definition F.2 ((𝛼, 𝜖)-RDP). A randomized mechanism𝑀 : D ×
Ω → R is said to have 𝜖-Rényi differential privacy of order 𝛼 , or
(𝛼 , 𝜖)-RDP for short, if for if for all adjacent 𝑑,𝑑 ′ ∈ D, we have
𝐷𝛼 (𝑀 (𝑑) | |𝑀 (𝑑 ′)) ≤ 𝜖 , where 𝐷𝛼 (·) is the (parameterized) Rényi
divergence [73].

Compared to (𝜖, 𝛿)-differential privacy, Rényi differential privacy
is a strictly stronger privacy definition. It offers an operationally

convenient and quantitatively accurate way of tracking cumulative

privacy loss throughout execution of a standalone differentially

private mechanism and across many such mechanisms [62]. Next,

we give the Rényi differential privacy guarantee of our R
2
DP mech-

anism and show that the privacy loss of R
2
DP under Rényi DP

can significantly (asymptotically for small 𝛼) outperform Laplace,

Gaussian and Random Response mechanisms.

Theorem F.4. If real-valued query 𝑞 has sensitivity 1, then the
R2DP mechanismM𝑞 , leveraging MGF𝑀 , satisfies{

(𝛼, 1

𝛼−1 log
[
𝛼𝑀 (𝛼−1)+(𝛼−1)𝑀 (−𝛼)

2𝛼−1

]
) − 𝑅𝐷𝑃. 𝑖 𝑓 𝛼 > 1

(1, 𝑀 ′(0) +𝑀 (−1) − 1) − 𝑅𝐷𝑃. 𝑖 𝑓 𝛼 = 1

Proof. The above RDP guarantee follows Corollary 2 in [62] on

the RDP guarantee of the classic Laplace mechanism. In particular,

the above equations are derived using the following substitutions

𝑒𝑥𝑝 (𝑡/𝑏) → 𝑀 (𝑡) and 1/𝑏 → 𝑀 ′(0) due to the second-fold ran-

domization of 𝑏. □

G OTHER APPLICATIONS OF R2DP
R
2
DP represents a very general concept which could potentially be

applied in a broader range of contexts. In general, applying R
2
DP to

design more application-aware mechanisms may further improve

the utility of many existing solutions, e.g., work [64] (Section 6

surveys other existing utility-maximizing schemes). We outline

some of the possible applications as follows.

G.1 R2DP and Composition
R
2
DP may be applied for reducing the differential privacy leakage

due to sequential or parallel querying over a dataset. In those scenar-

ios, the objective will be to maximize the number of compositions

under a specified 𝜖-differential privacy constraint.

G.2 R2DP and Local Differential Privacy
In this context, R

2
DP can be regarded as a new randomized response

model. In particular, the randomized response scheme presented

in [76] can be produced using R
2
DP for the Bernoulli distribution

when𝑏0 → 0 and𝑏1 →∞. Therefore, designingmore efficient local

differential privacy schemes using R
2
DP is an interesting future

direction.

G.3 R2DP for Continual Observation
Applications

Providing differential privacy guarantees on data streams repre-

sents another important future direction for R
2
DP. As an example,

the multi-input multi-output (MIMO) systems process streams of

signals originated from many sensors capturing privacy-sensitive

events about individuals, and statistics of interest need to be con-

tinuously published in real time [24, 53], e.g., privacy-preserving

traffic monitoring over multi-lane roads [11]. In this context, R
2
DP

can leverage the constraint related to the number of inputs and the

number of outputs (e.g., the sensitivity of the output of MIMO filter

𝐺 with𝑚 inputs and 𝑝 outputs is proportional to theH2 norm of

𝐺 which itself is an increasing function of𝑚 and 𝑝 [65]) into its

model to build more efficient differentially private mechanisms for

the MIMO scenarios.
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