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Abstract—As a cornerstone of cloud computing, multi-tenancy
brings not only the benefit of resource sharing but also additional
security implications. To achieve an optimal trade-off between
security and resource sharing, cloud providers are obliged to
evaluate the potential threats related to multi-tenancy. However,
quantitative approaches for evaluating those threats are largely
missing in existing works. In this paper, we propose a set of multi-
level distance metrics that quantify the proximity of tenants’
virtual resources inside a cloud. Those metrics are defined based
on the configuration and deployment in a cloud, such that a cloud
provider may apply them to evaluate the risk related to potential
multi-tenancy attacks. We conduct case studies and experiments
on both real and fictitious clouds. The obtained results show
the effectiveness and applicability of our metrics. We further
implement our metrics in OpenStack and show how they can be
applied for distance auditing.

Index Terms—Multi-Tenancy, Security Metrics, SDN-Based
Cloud, OpenFlow

I. INTRODUCTION

Multi-tenancy of the cloud is a double edged sword. On

one side, the economic gain fulfilled through resource sharing

constitutes one of the most appealing cloud advantages that

attract prospective customers. On the other side, the security

challenges driven by multi-tenancy and the associated risks [1]

constitute some of the main concerns that are holding back the

migration of critical applications to cloud.

In fact, the proximity with the victim can be exploited by

malicious cloud users to mount several attacks. In Table I, we

roughly classify those attacks into two categories according to

the required proximity (the list of attacks is not meant to be

exhaustive; other, including future or unknown, attacks may

also fit into those categories). When an attacker shares the

same host with the targeted victim, (s)he can launch type

I attacks (e.g., side channel attacks [2]), whereas type II

attacks (e.g., power attack [3]) can be mounted when resources

are shared with the victim at higher levels of the cloud

infrastructure, (e.g., rack-level). Successful attacks may affect

security properties of both victim’s virtual machines (VMs)

and their generated network flows at various levels of the

hierarchy. As an example, recent works have demonstrated the

feasibility of real-life attacks conducted in commercial clouds

including Amazon EC2, aiming at forcing malicious VMs to

be placed within a specific zone, which could be a host, a rack

or a larger scale area inside the cloud data center [4], [5].

Today’s cloud service providers (CSPs) are well aware of

such multi-tenancy-related threats, and they are often under

obligation to protect their tenants against such threats, either

as part of the service level agreements or to demonstrate

compliance with security standards (e.g., CCM 3.0.1 [10]).

Nonetheless, addressing multi-tenancy threats remains a chal-

lenging issue. First of all, completely avoiding multi-tenancy

is certainly impractical since it reduces the financial benefit,

which is an important factor to cloud adoption. Alternatively,

enabling resource sharing naturally implies a degree of expo-

sure to multi-tenancy threats. A mid-way solution for the CSP

would be to balance between the security implications and the

economic benefits of resource sharing. In this respect, evalu-

ating multi-tenancy threats based on the proximity between

tenants sharing the same cloud constitutes a valuable means

towards reaching an optimum trade-off between tolerated risks

and costs according to negotiated contracts.

Particularly, existing approaches (e.g., [11], [12]) propose

metrics to evaluate the overall cloud security risk based on

vulnerabilities in cloud deployments (a detailed review of the

related work will be given in Section V). Nonetheless, none

of them provides the potential impact at tenant-level according

to the degree of resource sharing. Furthermore, those works

focus only on the multi-tenancy threat related to type I attacks,

while evaluating the threat of type II multi-tenancy attacks has

not been tackled yet.

To the best of our knowledge, this is the first work that



Multi-Tenancy
Attacks

Cloud Inf. Levels Targeted Resources Targeted Sec. Prop.

Host only Different Levels Compute Network C I A

Type I

Side channel attacks [2] • • •
Host-based DoS attack [6] • • • •

SDN-based freeloading attack [7] • • • •

Type II

Power attacks [3] • • • •
Bandwidth attack [8] • • •
Resource abuse [9] • • •

TABLE I: Multi-tenancy attacks, their scopes, targeted resources and the affected security properties, namely, confidentiality

(C), integrity (I) and availability (A)

proposes multi-level metrics to quantify the distance between

tenants’ resources in an SDN-based cloud, as a means to

evaluate the multi-tenancy threats related to both type I and

type II attacks and assess the corresponding risk per tenant.

Specifically, the main contributions of this work are as follows.

• We devise a multi-level model capturing tenants’ virtual

infrastructures deployment inside SDN-based cloud.

• We propose novel metrics, namely, physical, compute and

network distances, to quantify the multi-tenancy threat in an

SDN-based cloud.

• We present three case studies based on both a real cloud and

fictitious clouds. The first and second case studies show how

our metrics correlate with the two types of multi-tenancy

attacks. In the third case study, we implement our metrics

in OpenStack and show how they can be used to define the

CSP’s compliance with tenants’ distance requirements.

The remainder of this paper is organized as follows. Sec-

tion II discusses the threat model, provides a running example

and presents our multi-level cloud infrastructure model. Sec-

tion III provides the formal definitions of our distance metrics.

Section IV presents the case studies and discusses how our

metrics can be used for per tenant risk assessment. Section V

summarizes the related work. Section VI concludes the paper.

II. MODELS

In the following, we discuss our threat model, and present

the running example and the cloud infrastructure model.

A. Threat Model

In this study, we assume that tenants do not have any

prior knowledge on the identities of other tenants hosted

inside the same cloud. Our in-scope attacks include any multi-

tenancy attacks that require an adversary to share resources

with the victim tenant at multiple levels of the cloud data

center. Any attacks involving administrator privileges are out

of scope. Consequently, we assume the information collected

from the cloud infrastructure management system to calculate

our metrics are trusted.

Our metrics are meant for evaluating the multi-tenancy

threats against the in-scope attacks, and they are not designed

to detect such attacks, identify the malicious tenant, or pinpoint

the vulnerabilities. In fact, our metrics are to be applied before

the attacks actually happen (unlike [13]), and without any prior

knowledge of the attacker’s identity (unlike [14]). Thus, our

metrics are complementary to other attack-specific security

solutions, e.g., attack detection and vulnerability analysis.

B. Running Example

In Figure 1, tenant tA shares the same data center with

many other tenants (to better illustrate the case, we consider an

exemplary tenant tB). Assume the CSP wants to evaluate the

impact of potential type I and type II multi-tenancy attacks

depicted in Table I against tA. Based on the deployment in

Figure 1, the CSP can make the following observations:

Fig. 1: An example demonstrating the physical distance be-

tween tenants’ virtual infrastructures, where VM A1,.., VM A5

belong to tenant tA and VM B1,.., VM B5 belong to tenant tB

• None of tA’s VMs are co-located with tB at the host-level,

therefore, it is unlikely for tB to perform type I attacks (e.g.,

side channel attacks [2]) against tA’s VMs, or to abuse their

network flows (e.g., freeloading attack [7]).

• Although launching type I attacks is out of tB’s reach, a

closer look reveals that tA is still under the risk of type

II attacks that take advantage of the shared infrastructure

at higher levels without requiring host-level co-residency.

For example, tB can perform power attack [3] at Rack11

using VM B1 and VM B2 to disturb services running at

VM A1 and VM A2 located at the same rack. This attack

also disturbs the communication of VM A1 and VM A2 with

VM A3, VM A4 and VM A5 located at Rack22.

• Furthermore, VM A3, VM A4 and VM A5, that are located

in a different rack and pod than tB, are less exposed to type

II attacks since their physical distance with respect to tB is

larger than the physical distance of VM A1 and VM A2 with

respect to the same tenant (Phy D2 > Phy D1).

The above observations intuitively show the correlation be-

tween measuring distances between tenants’ virtual infrastruc-

tures and evaluating the degree of exposure to multi-tenancy

threats at different levels of the shared cloud infrastructure.



Fig. 2: The multi-level cloud infrastructure model capturing tenants’ virtual infrastructures, the physical infrastructure and their

mapping. Note that the presented three-tiered network hierarchy is shared by most cloud data center topologies [15]

C. Multi-Level Cloud Infrastructure Model

To measure the distance between tenants, we derive an

entity-relationship model that captures tenants’ virtual infras-

tructure elements, the cloud infrastructure elements and their

relationships. Figure 2 illustrates such a model. The cloud

physical infrastructure includes servers and switches that are

hierarchically structured in different management zones shown

as aggregated nodes (e.g., several hosts can be aggregated into

a rack zone). A Tenant’s virtual infrastructure consists of a set

of VMs and their connecting virtual networks (vNet). Tenants’

VMs are located at compute services running inside hosts.

VMs are connected to vNets that are typically implemented

using flowspaces constituted of a set of OpenFlow rules [16]

segregated with flow tags1. These rules are configured in

some physical and virtual switches in different levels of the

hierarchy to enable the communication between VMs. We use

FSvNet to denote the cloud-wide flowspace of vNet, FS i
vNet to

denote the flowspace of vNet at Level i, and FS
swi j

vNet to denote

a flowspace in a given switch swi j at Level i.

On the right side of Figure 2, we define four physical levels

(Level 0 to Level 3) where tenants’ virtual infrastructures

(depicted on the left side of Figure 2) might be located. As

detailed later in Section III, we use those levels to define

our distance metrics. In the following, we provide the formal

definition for the multi-level cloud infrastructure model.

Definition 1 (Multi-Level Cloud Infrastructure Model): We

define the cloud infrastructure model as an array
−−→
CIn f of

dimension four, where CIn f [i].zone and CIn f [i].switch are re-

spectively the sets of zones and switches at Level i (0≤ i≤ 3).

Example 1: Figure 3 illustrates an instance of the afore-

mentioned multi-level cloud infrastructure model (Figure 2)

capturing the example of Figure 1. In Figure 3, an excerpt of

the OpenFlow table in Edg11 shows the co-residency of the

flow rules belonging to vNet A (i.e., r1 and r2) and vNet B

(i.e., r3). Specifically, VM A1 and VM A2 of tA located

at Rack11 communicate with VM A3, VM A4 and VM A5

(not shown for space limitation) located at Rack22 through

vNet A. Similarly, VM B1 located at Rack11 communicates

with VM B5 located at Rack12 through vNet B. Those commu-

nications are made possible through flowspaces installed inside

Edg11, Agg11 and other switches in the topology depending on

the location of the communicating VMs. Since VM A1 and

1A flow tag is a special match field in OpenFlow rules that enables to
segregate flow rules belonging to different virtual networks

VM A2 of tA co-reside with VM B1 at Rack11, the flowspaces

governing their flows will inevitably share Edg11 at the rack-

level and possibly Agg11 at the pod-level. �

III. MULTI-TENANCY DISTANCE METRICS

We first define the multi-level physical distance between a

pair of tenants to capture their symmetric distance based on the

level of physical resource sharing, then we refine this distance

along the compute and network dimensions to quantify their

asymmetric distances based on their resources’ deployment.

A. Physical Distance

The physical distance captures the symmetric relationship

between a pair of tenants in terms of the levels of shared

resources. We define this distance between two tenants’ vir-

tual infrastructures (VMs and their flowspaces) as a four-

dimensional vector Dφ , where Di
φ = 0 (resp. Di

φ = 1) means

Level i is (not) shared. We provide an illustrative example

followed by the formal definition.

Example 2: In Figure 3, VMs of tenant tA do not co-locate

in the same hosts at Level 0 with the VMs of tenant tB, their

physical distance at Level 0 is therefore D0
φ = 1. However,

VM A1 and VM A2 share Rack11 at Level 1 with VM B1 and

VM B2, and since management zones are nested, it follows

that all the upper levels of the cloud infrastructure are also

shared. Additionally, the flowspaces associated with vNet A

and vNet B share Edg11 at Level 1 and Agg11 at Level 2.

Thus, the physical distance between the two tenants can be

quantified using the vector (1,0,0,0). �

Let t and t ′ be two tenants hosted at the cloud data center.

The virtual infrastructure belonging to tenant t (resp. tenant

t ′) is composed of a set of VMs, VMs (resp. VM′
s) connected

to vNet (resp. vNet’), where FSi
vNet (resp. FSi

vNet’) is the asso-

ciated flowspace at a given Level i (0 ≤ i ≤ 3). We define the

set of shared zones between t and t ′ at Level i to be the set of

zones that are simultaneously accommodating at least one VM

belonging to tenant t and one VM belonging to tenant t ′. We

denote it szi {VMs,V M′
s}. We similarly define the set of shared

switches between t and t ′ at Leveli to be the set of switches

on which is installed at least one OpenFlow rule r from each

of t and t ′ flowspsaces. We denote it ssi

{

FS i
vNet,FS i

vNet’

}

. We

define the symmetric physical distance between the pair of

tenants {t, t ′} as follows:

Definition 2 (Physical Distance):

Let szi {VMs,VM′
s} and ssi

{

FS i
vNet,FS i

vNet’

}

respectively

the sets of shared zones and switches between t and t ′ at



Fig. 3: An instance of the multi-level cloud infrastructure model capturing a subset of the deployment of Figure 1

Level i. Then, their physical distance is given by the four

dimensional vector Dφ {t, t ′}, where the values of its elements

Di
φ are computed as follows:

Di
φ

{

t, t ′
}

=











1 if szi {V Ms,V M′
s}= /0 and ssi

{

FSi
vNet,FSi

vNet’

}

= /0

0 Otherwise

B. Compute Distance

The compute distance is an asymmetric distance that cap-

tures the degree of exposure of a tenant t’s VMs to another

tenant t ′.

Example 3: From Example 2 we have Dφ {tA, tB} =
(1,0,0,0). VM A1 and VM A2 of tA share Rack11 with tB’s

VMs, while VM A3, VM A4 and VM A5 share the cloud

infrastructure with tB at Level 3 only, which corresponds to

the data center. Consequently, the compute distance for tA with

respect to tB at Level 1 and Level 2 is the fraction of VMs that

do not share the same racks and pods, which is 3/5. Hence,

the multi-level compute distance for tenant tA with respect to

tB is (1,3/5,3/5,0). �

More formally, we define the average compute distance of

tenant t with respect to tenant t ′ according to the number of

shared zones as follows (VMz
s is the set of VMs located at

zone z):

Di
ς (V Ms,V M′

s) =







Di
φ {t, t ′} if sz{V Ms,V M′

s}= /0
∑

z∈CIn f [i].zone\sz{VMs ,VM′
s}

|VMz
s∩V Ms|

|VMs |×|sz{V Ms ,VM′
s}|

Otherwise

We consider the average distance because the more re-

sources share the same zone the higher the risk related to

multi-tenancy attacks would be, as will be discussed in Section

IV-A. Note that D3
ς is different than zero when tenants’ VMs

are deployed over multiple data centers.

C. Network Distance

By analogy to the compute distance, the network distance

is also an asymmetric distance that captures the degree of

exposure of a specific tenant’s network resources with respect

to another tenant.

Example 4: The OpenFlow rules depicted in Figure 3 have

six match fields, source/destination MAC, source/destination

IP and source/destination port, in addition to the flow-tag.

The bit sequence composing those match fields can be either

a wildcard or an exact-match, i.e., fixed to zero or to one,

where rules with more wildcarded bits define larger flows.

Since sharing more flows with other tenants increases the risk

of network isolation breaches (e.g., freeloading attacks [7])

and unavailability (e.g., bandwidth attack [8]), we quantify the

network distance of vNet A with respect to vNet B based on

the size of flowspaces that are not sharing the same switches.

As illustrated in Figure 3, a case of co-residency for the

flowspaces of vNet A and vNet B is reported at Level 1 in

Edg11. In the latter switch, both flow rules r1 and r2 have

all the match fields as exact match meaning that each rule

handles a flow composed of one packet only. Since not all

flowspaces can be shown for space limitation, we assume that

the flow size of vNet A at Edg11 is equal to 10, and that its

total flow size at Level 1 is 16. Then, the network distance at

this level is D1
η =(16−10)/16. Additionally, if we assume that

all vNet A flowspaces are shared with vNet B at both Level 2

and Level 3, then the network distance vector for vNet A with

respect to vNet B would be equal to (1,6/16,0,0). �

Let ω be the length in terms of bits of an OpenFlow rule

match sequence. Similarly to [17], we abstract away from the

meaning associated with each OpenFlow rule’s header match

field, and consider a match sequence to be a sequence of

bits defined over {0,1,∗}ω
, where * is the wildcard symbol.

Let ψ be the number of exact match bits of an OpenFlow

rule r, where ψ ≤ ω , and let sizeof( ) be a function that

measures the flow size of the OpenFlow rules. The flow

size of r is equal to sizeof(r) = 2ω−ψ . Particularly, the flow

size defined by a rule where all bits in the match sequence

are exact match, is equal to sizeof(r) = 20 = 1 (as ψ = ω).

The size of all flowspaces for a given virtual network at

a specific level can be computed by aggregating the size

of all OpenFlow rules associated with it (for simplicity, we

assume that OpenFlow rules do not overlap). This is given

by size(FSi
vNet) = ∑r∈FSi

vNet
sizeo f (r). We define the average

network distance between the flowspaces of vNet and vNet’ at

a given Level i as:

Di
η (FSi

vNet ,FSi
vNet’)=







1 if ssi

{

FS i
vNet ,FS i

vNet’

}

= /0
size(

⋃

s∈CIn f [i].switch\ssi{FS i
vNet

,FS i
vNet’}

FSs
vNet

)

size(FSi
vNet

(t))×|ssi{FS i
vNet

,FS i
vNet’}|

otherwise



IV. CASE STUDIES

In this section, we illustrate through case studies the appli-

cability of our distances with both fictitious and real clouds.

We also present a quantitative auditing approach.

A. Case Study 1 (Correlation with Multi-Tenancy Attacks)

We consider the fictitious cloud data center illustrated in

Figure 4, which is constituted of four pods, eight racks (two

racks per pod) and 96 physical servers (12 servers per rack).

This data center is shared by several tenants. For illustrative

purposes, we consider four tenants, namely, tA, tB, tC and tD.

Fig. 4: An illustrative case study of a cloud data center

topology. Physical servers are named PS xyz, where x is the

index of the pod, y is the index of the rack, and z is the index

of the physical server

In the following, we show how our physical distance corre-

lates with the two types of multi-tenancy attacks (see Table I).

The rows of matrix Dφ (tA) report the physical distance of tA
with respect to tenants, tB (first row), tC (second row) and tD
(third row) based on the deployment of Figure 4, where each

column represents a physical level of the cloud infrastructure.

Dφ (tA) =





0 0 0 0

1 0 0 0

1 1 1 0





The following shows how larger physical distances reduce

the multi-tenancy threats. Assume tB, tC and tD are malicious

and want to take advantage of the multi-tenancy situation to

launch type I or type II attacks (see Table I) against tA. Based

on Table I, we can discuss the required distance and potential

impact for each category of attacks as follows.

• Type I attacks require co-residency with the targeted vic-

tim at the same host (e.g., side channel attacks [2]). As

D0
φ {tA, tB}= 0, the only potential risk of this type of attacks

is limited to tenant tB.

• Type II attacks do not necessarily require co-residency at

the host-level to succeed. However, the following reasoning

shows that the larger the physical distance is, the less the risk

related to those attacks would be. We consider power attack

[3] as an example and similar reasoning can be applied to

other type II attacks (e.g., bandwidth attacks [8]).

The power attack exploits the power over-subscription vul-

nerability, which consists of overloading a power supply

with more workloads than it supports with the assumption

that workloads will never reach their peak simultaneously.

If the attacker succeeds to place many VMs inside a zone

(server, rack or a larger zone) alimented with the same

power facility, then he can generate simultaneous power

spikes, which would lead to power outage when the power

consumption exceeds the power capacity for that specific

zone. However, the larger the zone attacker is targeting, the

more controlled VMs need to be deployed to increase the

power consumption, since smaller zones converge faster to

their peak power1. Based on that and considering Dφ (tA),
we can infer the following:

– If tB or tC launch their attack against Rack11, this would

be enough for them to cause damage to all the resources

of tA (VMs and their flows) that are located at this rack

zone, since both tenants share the same rack as the victim.

– However, it is more difficult for tD to affect tA resources

since this would require him to launch this attack at the

data center scale (as no racks or pods are shared), which

would require much more effort than for tB or tC.

To show the correlation between the physical distance and

the effort required to launch power attack, we simulated the

cloud architecture described in [19], with a number of tenants’

workloads following an exponential distribution [9]. Power is

defined per units, where each unit power supports one VM.

We assume each host has the capability to accommodate eight

VMs, and the power consumption at higher levels is obtained

by summing up the power consumption of aggregated lower

levels. Figure 5 reports the effort required by an attacker at

each level of the cloud infrastructure in terms of the number

of deployed VMs and their consumed power.

We observe that launching power attack at Level 0 requires

the lowest effort, while launching the attack at the data

center scale requires consuming four orders of magnitude

more energy by deploying more VMs. From this analysis, we

can conclude that larger physical distances reduce the multi-

tenancy risk for power attack. In the next case study, we show

with real cloud data, the need for refined distance metrics to

capture the impact of potential multi-tenancy attacks.

B. Case Study 2 (Real Cloud Data Center)

This case study is based on a real community cloud hosted

at a major telecommunication company. We collect data from

part of this cloud composed of 22 hosts organized into two

racks as depicted in Figure 6. We perform our study on

a dataset composed of 372 VMs belonging to 37 tenants.

The focus of this case study is to show the complex co-

residency relationships between tenants in real world cloud,

and therefore, the need for metrics to measure distances be-

tween tenants’ resources. For illustration, we randomly choose

1It has been reported in [18] that racks reach 96% of their peak power,
while pods and data centers do not exceed respectively 86% and 72% of their
peak power
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Fig. 5: (a) Attacker’s requirements, and (b) average attacker’s

requirement in terms of power consumption to disrupt services

of a victim at different levels of the cloud infrastructure. The

X axis corresponds to possible physical distance metric values

three tenants, t1, t2 and t3. Note that the dimension of our

distances is equal to three for this hierarchy, since the latter

is only composed of hosts, access and aggregate layers.

Fig. 6: Part of a real cloud data center topology constituted

of 22 physical servers organized into two racks hosting 372

VMs belonging to 37 tenants

Table II reports the number of VMs of tenants t1, t2 and t3
inside each physical host of the considered part of the cloud

data center. One can notice that tenants’ VMs are scattered

over multiple physical nodes in both racks. Specifically, t1 has

VMs co-residing with both t2 and t3’s VMs in many different

locations. Consequently, the flowspace of t1’s virtual network

co-resides with the flowspaces of t2 and t3 virtual networks

at Edg1, Edg2 and Agg, in addition to the virtual switches

running at the physical servers. Due to lack of space, we only

discuss the compute distance. The matrix Dς (t1) reports the

compute distance of t1 with respect to t2 (first row) and t3
(second row) based on the deployment in Table II.

Dς (t1) =

(

0.005 0.5 0

0.049 0.5 0

)

We can infer the following from the compute distances:
• Both t2 and t3 can perform type I attacks against t1 since

both are co-residing with the victim at some physical hosts

(Level 0). However, t1 has more VMs sharing the same hosts

as t2, and hence has smaller distance with respect to t2 than

t3 (0.005 < 0.049). Therefore, the impact of t2 attack on t1
VMs will be higher than the impact of t3 attack. Note that

similar reasoning can be applied on the network distances.

• Both t2 and t3 can perform type II attacks either at the rack-

level or at the pod-level as they have many VMs deployed

over Rack1 and Rack2. Since the distance of t1 with respect

to t2 is equal to his distance with respect to t3 both at the

rack-level (D1
ς = 0.5) and at the pod-level (D2

ς = 0), attacks

from the two tenants will have similar impact on t1.

We further evaluate through simulations how the compute

distance changes while increasing the cloud data center’s

workload and size. As illustrated in Figure 7, our compute

distance at Level 0 captures the expected increase in the

degree of resource sharing while increasing the total number

of data center’s VMs (see Figure 7(a)), and the decrease in

resource sharing while increasing the data center’s size (see

Figure 7(b)), which shows the effectiveness of our metric.
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Fig. 7: The compute distance at Level 0 (a) while increasing

the number of data center’s VMs, and (b) while increasing the

number of data center’s hosts

C. Case Study 3 (Quantitative Auditing)

In this case study, we show how our metrics can be used

to quantitatively audit the compliance of deployed virtual

infrastructures against tenants’ requirements in terms of the

distance. As a continuity of the case study in Section IV-A,

we assume that tenant tA’s security team is aware of the

multi-tenancy attacks and specifies accordingly a compute

distance requirement for his own VMs against other tenants

as Dς(tA) = (1,1,0.5,0).
To evaluate the compliance deviation, the CSP first mea-

sures the distances for the current cloud deployment, then

he checks the measured distances against the required one to

evaluate the deviations. In the following, matrices Mς (tA) and

△Dς (tA) respectively report measured distances and deviations

for tA with respect to tenants tB, tC and tD (represented respec-

tively by the first, second and third row in matrices) based on

the cloud configuration in Figure 4 and the required compute

distance Dς(tA). The obtained deviation matrix reports how

much the current cloud implementation has deviated from the

required specification, where higher values correspond to more

deviations and consequently reduced distances.

Mς (tA) =





0.625 0 0 0

0 0 0 0

0 0 0 0



△Dς (tA) =





0.375 0 0 0

0 0 0 0

0 0 0 0





We integrated the described auditing approach into

OpenStack [20], one of the most commonly used

infrastructure management platforms. Algorithm 1

describes the compliance deviation evaluation procedures

based on the required distances. First, the procedure



Racks Rack1 Rack2

Hosts S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22

t1 0 1 0 0 0 4 6 4 4 8 9 4 10 4 6 16 1 4 8 7 2 0

t2 4 0 0 2 0 4 6 12 8 5 4 2 3 6 6 6 1 10 2 0 0 1

t3 0 0 0 0 0 0 2 1 1 1 1 0 5 0 1 0 0 0 0 2 0 0

TABLE II: Number of VMs of tenants t1, t2 and t3 insider each physical host in the considered part of the cloud data center

Per Tenant Implemented Distance measures the implemented

distances based on data collected mainly from Nova1 database

for the compute distances, and on the OpenDaylight2 [21]

database for the network distances. Then, the procedure

Per Tenant Deviation evaluates the deviation with respect

to different tenants accommodated by the same data center.

Finally, a matrix is generated to report deviations at different

cloud levels. Note that if tenant tA has multiple outsourced

virtual infrastructures, he can specify distance-based policies

with multiple rules according to the sensitivity-level of

different workloads.

Algorithm 1 Compliance Deviation Evaluation

procedure GLOBAL DEVIATION( D(t))
for each tenant t ′ belonging to the data center do

M(t, t ′)=Per Tenant Implemented Distance(t, t ′)

△D(t, t ′)=Per Tenant Deviation(D(t), M(t, t ′))

Return(△D(t))

procedure CALCULATE LOCAL DEVIATION(D(t), M(t, t ′))
for i = 0 to 3 do

△D [i] = 0

if M [0] < D [0] then

△D [0] = D [0]−M [0]

Return (△D(t, t ′))

To evaluate our quantified auditing approach, we simulate

the K-ary tree data center topology [22] with 40 core switches,

and deploy the virtual infrastructures of 20 tenants. We assign

tenants’ VMs to servers in a round robin fashion and build

their connections in switches at different levels.
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Fig. 8: Changes in the deviation vectors (a) while varying the

number of rules, and (b) while varying the number of VMs

per rule

In Figure 8(a), we fix the number of VMs per rule to 20

and vary the number of rules, whereas in Figure 8(b), we

fix the number of rules to eight and vary the number of

VMs per rule. In both figures, we can notice that the most

significant deviations (delta distances) are recorded for Level 0

(up to 0.45), which correspond to the host-level. This is due

to the higher security threats related to host-level co-residency

(type I attacks), leading tA to set higher distances at Level 0

compared to other levels. Therefore, deviations from those

distance requirements drastically decimate the overall security

1OpenStack Nova [20] is a project designed to provide on-demand access
to compute resources

2OpenDayLight is an open source SDN controller

with respect to the distance. As for Level 1 and beyond, the

deviation average does not exceed 0.1. This stems from the less

significant security threats at higher levels leading tA to relax

the requested distances to reduce costs. Note that our approach

is flexible to accommodate different tenants’ security needs as

they could specify their distances at deployment time.

D. Discussions

Based on the presented case studies, we can conclude that

the physical distance correlates with the degree of difficulty

for multi-tenancy attacks, while the compute and network dis-

tances provide the potential impact of those attacks according

to the degree of resource sharing at each level. Therefore, our

distance metrics can be applied for evaluating the preliminary

tenant pair-wise multi-tenancy risk incurred by a given cloud

deployment. To this end, the CSP first defines a diagonal

probability matrix P, where each element pii corresponds to

the likelihood of different types of multi-tenancy attacks at

Level i. Those probabilities can be defined using existing

approaches as presented in [11]. Then, the multi-tenancy risk

for a given tenant t with respect to another tenant t ′ will be

given by the weighted norm of tenant t’s distance with respect

to tenant t ′. This can be expressed as Risk(t, t ′) = ||D(t, t ′)||P =
√

D(t, t ′)⊤×P×D(t, t ′). Since potential attackers’ identity is

not known a priory, the overall multi-tenancy risk for a tenant

t can be defined as the average of tenant pair-wise risks given

by Risk(t) =
∑t′∈T\{t} Risk(t,t′)

|T |−1
, where T is the set of all tenants.

Due to the dynamic nature of the cloud, calculated metric

values can be quickly invalidated by various management

operations such as VM migration events. By integrating our

metrics into the cloud infrastructure management platform

(e.g., OpenStack [20]), the CSP can monitor those operations

and evaluate the metrics at runtime to continuously control the

co-residency threats. Additionally, in this work, we assume

that all VMs are equally sensitive, which might not be the

case for some applications (e.g., three-tier applications). We

leave the study of systematic approaches for runtime metrics

evaluation and considering resources with different levels of

sensitivity as part of future work.

V. RELATED WORK

To the best of our knowledge, this is the first work proposing

metrics for quantifying the distance between tenants’ virtual

infrastructures in cloud deployments.

Few works provide quantitative assessment frameworks to

evaluate Security SLAs (SecLAs) [23], [24]. For instance,

Luna et al. [23] developed a set of metrics to quantitatively

compare, benchmark and evaluate the compliance of CSPs’

reference SecSLAs. Authors in [24] propose a framework

enabling cloud customers to choose the appropriate CSP ac-

cording to their security requirements. While those approaches



provide valuable frameworks for prospective customers to

choose the right CSP based on the advocated SecLAs, our

approach provides CSPs with a tool to evaluate proximity

between tenants’ resources inside cloud deployments, which

enables to evaluate the multi-tenancy risk.

In [11] and [12], authors propose metrics to evaluate the

cloud-level risk from multiple perspectives (VMs, hosts and

network connections). Those metrics enable to assess the

cloud-level risks, while our metrics enable to evaluate the

multi-tenancy rick at tenant-level, which makes them inter-

esting for the auditing use case as discussed in SectionIV-C.

Most existing works on cloud auditing propose a binary

audit answer [25]–[27]. Bleikertz et al. [25] propose a graph-

based static information flow analysis for virtual infrastruc-

tures towards verifying information flow isolation. Majumdar

et al. [26] propose a user-level multi-domain cloud auditing.

Madi et al. [27] propose auditing cloud virtual infrastructures

using a constraint satisfaction problem solver for checking

security properties. While those approaches aim at detecting

isolation breaches, they do not provide tenants with quantita-

tive results reflecting the security-level of their resources.

In [28], authors propose a VM migration service that aims

at limiting the information leakage due to side channel attacks

by applying the moving target defense technique. Our metrics

can be used to evaluate the effectiveness of this approach in

reducing the multi-tenancy threats inside cloud deployments.

VI. CONCLUSION

In this paper, we proposed three metrics to quantify prox-

imity between tenants inside cloud deployments. We showed

through case studies the effectiveness and applicability of

those metrics to evaluate multi-tenancy threats. We believe

our metrics can be extended to evaluate other threats in cloud.

Therefore, they should be considered as a first step toward a

more general tool-set for threat evaluation in the cloud.

As future work, we intend to study multi-tenancy attacks

taking advantage from shared storage and propose a storage

distance accordingly. We also plan to propose cloud manage-

ment strategies to enforce distances as a means to control the

multi-tenancy risk.
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