Network Attack Surface: Lifting the Concept of
Attack Surface to the Network Level for Evaluating
Networks’ Resilience against Zero-Day Attacks

Mengyuan Zhang, Lingyu Wang, Member, |EEE, Sushil Jajodia Fellow, IEEE, and Anoop Singhal Senior
Member, 1EEE,

Abstract—The concept of attack surface has seen many appli-
cations in various domains, e.g., software security, cloud security,
mobile device security, Moving Target Defense (MTD), etc.
However, in contrast to the original attack surface metric, which
is formally and quantitatively defined for a software, most of
the applications at higher abstraction levels, such as the network
level, are limited to an intuitive and qualitative notion, losing
the modeling power of the original concept. In this paper, we
lift the attack surface concept to the network level as a formal
security metric for evaluating the resilience of networks against
zero day attacks. Specifically, we first develop novel models for
aggregating the attack surface of different network resources. We
then design heuristic algorithms to estimate the network attack
surface while reducing the effort spent on calculating attack
surface for individual resources. Finally, the proposed methods
are evaluated through experiments.

I. INTRODUCTION

For mission critical computer networks (e.g., those that
play the role of a nerve system in critical infrastructures,
governmental or military systems, and cloud data centers), the
security administrators usually need to look beyond traditional
security mechanisms, such as firewalls and IDSs. Their worry
over the prospect of Advanced Persistent Threat (APT) and
hidden malware usually drive them to understand the resilience
of their networks against potential zero day attacks (i.e.,
attacks that involve exploiting previously unknown vulnera-
bilities). However, while there exist standards and metrics for
measuring the relative severity of known vulnerabilities (e.g.,
CVSS [1]), the task is more challenging for unknown vulnera-
bilities, which are sometimes believed to be unmeasurable [2].

To that end, a promising solution is the attack surface
concept [3], which is originally proposed for measuring a
software’s degree of security exposure along three dimen-
sions, namely, entry and exit points (i.e., methods calling 1/0
functions), channels (e.g., TCP and UDP), and untrusted data
items (e.g., registry entries or configuration files). Since attack
surface relies on such intrinsic properties of a software, which
are independent of external factors (e.g., the disclosure of
vulnerabilities or availability of exploits), it naturally covers

M. Zhang and L. Wang are with the Concordia Institute for Information
Systems Engineering (CIISE), Concordia University, Montreal, QC H3G 1M8,
Canada. E-mail: {mengy_zh,wang}@ciise.concordia.ca.

S. Jajodia is with the Center for Secure Information Systems, George Mason
University, Fairfax, VA 22030, USA.

A. Singhal is with the Computer Security Division, National Institute of
Standards and Technology, Gaithersburg, MD 20899, USA.

both known and unknown vulnerabilities [3] and becomes a
good candidate for modeling the threat of zero day attacks.

Evidently, in addition to software security, the concept
of attack surface has also seen many applications in other
emerging domains, e.g., cloud security [4], mobile device
security [5], automotive security [6], Moving Target Defense
(MTD) [7], etc. (a detailed review of related work is provided
in Section VI). However, in contrast to the original attack
surface metric, which is formally and quantitatively defined
for a single software, most of the applications at higher
abstraction levels (e.g., the network level) are limited to an
intuitive and qualitative notion [8]. Adopting such an imprecise
notion unavoidably loses most of the original concept’s power
in formally and quantitatively reasoning about the relative
likelihood of different systems to contain vulnerabilities.

In this paper, we address this issue by lifting the original
attack surface concept to the network level as a formally
defined security metric, namely, network attack surface, for
evaluating the resilience of networks against potential zero day
attacks. There are two main challenges in lifting attack surface
to the network level. First, the attack surface model relies
on addition for aggregating scores, which is incompatible
with the causal relationships among different resources inside
a network. Second, there exists a challenge that the only
way to avoid the costly calculation of attack surface is to
perform that calculation. We devise models and heuristic
algorithms to address those challenges, and we confirm the
effectiveness of the proposed solutions through experiments
(e.g., our algorithms has an error rate of 0.05 when we only
calculate the attack surface for 20% of the resources).

The main contribution of this work is twofold. First, to
the best of our knowledge, this is the first work to lift the
attack surface concept to the network level as a formally
defined security metric. It addresses a key limitation of our
previous works [9], [10], [11], [12], i.e., different resources
are assumed to be equally likely to include unknown vulnera-
bilities. Second, our simulation results show that the proposed
algorithms can produce relatively accurate results with a
significant reduction in the costly calculation of attack surface,
paving the way for practical applications at the network level.

The rest of the paper is organized as follows. Section 1l
defines the formal models, and Section 111 designs the heuristic
algorithms. Section IV discusses how to instantiate the mod-
els, and Section V presents experimental results. Section VI
reviews related work, and Section VII concludes the paper.

Il. THE NETWORK ATTACK SURFACE MODEL

In this section, we first build intuitions through a motivating
example and describe our assumptions in Section 1I-A. Sec-
tions 11-B and 11-C then convert the attack surface into attack
probabilities. Finally, Section 11-D aggregates the attack prob-
abilities of different network resources into a single measure
of network attack surface.

A. Motivating Example and Assumptions

First, we illustrate the main challenges through a moti-
vating example. Figure 1 depicts the network topology of
a fictitious campus network [13]. We assume the External
Firewall allows all outbound connection requests but blocks
all inbound requests to the Mail Server (h2) and File Server
(h3), including those from the Classroom Computers (h25);
the Internal Firewall allows all outbound requests from the
Admin Host h4 but blocks all inbound requests except those
from h2. We also assume our main concern is protecting h4.
Based on such assumptions, we can see that, an attacker at hO
can potentially follow an attack path, e.g., h1 — h2 — h4,
to compromise h4. Keeping this in mind, we consider the
question: How could we apply the attack surface concept [3],
which is only defined for each individual software to such a
network to measure its overall security (e.g., in terms of h4)?

Two obvious solutions are to directly apply the metric either
by regarding the whole network as a single software system,
or by first applying it to each resource separately, and then
adding the results together. Since the addition operation is
associative, both solutions actually yield the same result, i.e.,
the total numbers of methods, channels, and untrusted data
items, respectively. The main problem here is that such an
addition operation is incompatible with the causal relationships
between network resources, which can be either conjunctive
or disjunctive. For example, in Figure 1, while it makes sense
to add up the attack surface of all the Classroom Computers
(i.e., a larger number of such computers means the network is
more exposed to attacks), applying this along an attack path,
e.g., hl — h2 — h4, is less meaningful, since it means
a longer attack path, which indicates more attacking steps
required from an attacker and hence more security, would
yield a larger attack surface meaning less security. Therefore,
our first challenge is how to aggregate the attack surface of
network resources while respecting their causal relationships,
which will be the main topic of the remainder of Section II.

The second major challenge lies in the calculation of attack
surface, which is well known to be costly since identifying the
source code that lies on the attack surface may require domain
expertise and manual effort [3], [14]. Therefore, a natural
question is whether we can reduce our effort by avoiding
calculating attack surface for those resources that do not con-
tribute to the final result. For example, in Figure 1, since our
main concern is h4, we only need to calculate attack surface
along the path h1 — h2 — h4, which significantly saves
the effort by avoiding the calculation for the 25 Classroom
Computers. However, the problem is not so straightforward in
general. In this example, suppose we change the firewall rules
such that requests are allowed to be sent from both h2 and h3

to h4 . We now have a challenge that, in order to know which
path, h1 — h2 — h4 or h1 — h3 — h4, should be calculated
(the criteria for selecting the path will be detailed later in this
section) such that we can avoid calculating the other path, we
must first calculate and compare the attack surface of both h2
and h3, which defies the purpose because by then we would
have effectively calculated both attack paths. Therefore, our
second challenge is how to reduce the effort of calculating
attack surface for network resources while keeping the final
result sufficiently accurate, which will be the main topic of
Section I111.

Assumptions: We make following assumptions in this paper.
First, similar to other metrics (e.g., temperature, length, and
weight), the attack probability discussed in our model is
only intended as a relative measure for comparison between
different software; the absolute value is less meaningful and
not intended to indicate the exact probability of attacks, which
is generally infeasible to obtain in practice. Second, the metric
focuses on remote attacks exploiting network services and does
not cover other types of threats, e.g., those caused by human
errors, social engineering, infected browsers, phishing attacks,
etc. (note that, since the consequence of those attacks is some
resources become directly accessible to external attackers or
malware, those attacks could still be covered in our model, al-
though we do not consider them for simplicity). Third, similar
to the original attack surface concept, our metric only provides
a general indicator of the network’s potential for vulnerabilities
but provides no guarantee for such vulnerabilities to actually
exist (however, we do examine the correlation between the two
through experiments with real world software in Section V-A).

B. CVSSBased Attack Probability

This section addresses the challenge that the addition op-
eration used in attack surface is incompatible with the causal
relationships between network resources, as demonstrated in
Section I1-A. Our main idea is to convert the attack surface of
each software resource into an attack probability (the relative
likelihood that the software contains at least one exploitable
zero day vulnerability), which can then be aggregated for
different resources based on their causal relationships. Since
attack surface provides an indication of both the severity (rep-
resented by the weights, i.e., the access rights and privileges)
and the likelihood (represented by the counts, i.e., the total
numbers of methods, channels, and untrusted data items) of
potential vulnerabilities [3], the conversion will take two steps
as follows.

« First, for each group of methods, we explore a mapping
between the attack surface and the common vulnerability
scoring system (CVSS) [1] to convert the access rights
and privileges of attack surface to a CVSS base score.

« Second, at the software level, we aggregate the base
scores of different groups of methods into a single attack
probability for the entire software.

1) Method Group-Level Conversion: First, we briefly re-
view the concepts of attack surface and CVSS [1]. As illus-
trated in the first column of Table I, the CVSS defines six base

Classroom Computers (h25)

Admin Server (h4)

192.168.1.1~192.168.1.25 192.168.2.1
Bonjour v2.0
D Samba v4.4.0
= MySQL v5.7

Firewall Builder v5.1.0.3599

Attacker (h0 External Firewall
>C’/Internet7 N
- IPCop v2.1.5

Cisco Network Registrar v7.0

PRTG v16.1.22.2657

Internal Firewall

N

IPCop v2.1.5

Apache MINA SSHD v1.0

’ Samba v4.4.0

Apache HTTP Server v2.4.20 Courier IMAP v4.0.1 Nginx v1.9.10
TeamViewer v11.0.56083 IIDI:[II Samba v4.4.0 HDED TeamViwer v11.0.56083
MySQL v5.7 TeamViwer v11.0.56083 ProFTP v1.2.10

ProFTP v1.2.10

Web Server (hl
192.168.2.2

Sendmail SMTP v8.1.5.2

Amanda v3.3.7p1

File Server (h3)
192.168.2.4

Mail Server (h2
192.168.2.3

Fig. 1: The Motivating Example

metrics in two groups, and the accessibility group includes the
following [1].

o Access Vector (AV): what is required to access this
method; Local (L): requiring physical access to the
host; Adjacent Network (A): requiring access to adja-
cent networks, e.g., local subnet; Network (N): remotely
exploitable.

o Access Complexity (AC): the complexity of the attack
required to access this method; High (H): requiring
specialized access conditions, e.g., social engineering
or spoofing multiple systems; Medium (M): requiring
somewhat specialized access conditions, e.g., non-default
configuration; Low (L): requiring no specialized access
condition, e.g., default configuration.

« Authentication (Au): the type of authentication required
to access this method; Multiple (M): requiring authenti-
cation two or more times; Single (S): requiring attacker
to login to the system; None (N): authentication not
required.

The impact group includes confidentiality impact (C), in-
tegrity impact (I), and availability impact (A) (the possible
values of each metric and their corresponding numerical scores
are also shown in the table) [1]. The second column of Table |
shows the different access rights and privileges and their
numerical values used as weights in the attack surface metric
(the underlined rows will be discussed later).

Since both the accessibility group of CVSS and the access
rights of attack surface represent the pre-conditions for ex-
ploiting a vulnerability, their values may be mapped together.
Similarly, the impact group of CVSS and the privileges of
attack surface both represent the post-conditions of exploiting
a vulnerability and are mapped together. As an example.
the mapping for two IMAP daemons are shown in the last
column of Table I (three dimensional attack surface values
have been calculated in [3]). Each CVSS vector maps to the
corresponding access right or privilege in the same row in the
second column.

The mapping is established based on understanding the
software, including its channels and untrusted data items
(consequently, we will not count those again later when we
convert base scores into attack probabilities). First, in the
third row, the authenticated access right is mapped to network

for access vector (i.e., AV:N), because the UNIX socket in
those software has the local authenticated access right, which
means attackers may obtain the local authenticated access right
over the network. Second, we assign access complexity to
medium (i.e., AC:M), because the authenticated access right
matches the description of the medium access complexity:
“The affected configuration is non-default, and is not com-
monly configured (e.g., a vulnerability present when a server
performs user account authentication via a specific scheme, but
not present for another authentication scheme)” [1]. Finally,
we assign Authentication to single (i.e., Au:S), because the
access requires a single authenticated session in those soft-
ware. Similarly, in the fifth row, the authenticated privilege
is mapped to partial confidentiality impact, partial integrity
impact, and complete availability impact (i.e., C:P, I:P, A:C),
since the authenticated privilege implies accesses to 13 files
in those software, allows modifying some system files or data,
and may render the system unusable by deleting critical files.

As shown in Table I, we map all the methods of those two
software to corresponding CVSS base metrics, and then calcu-
late the overall base score according to the CVSS formula [1],
as shown in Table Il. The methods are divided into groups
(first column) according to similar privileges (second column)
and access rights (third column). The fourth and fifth columns
show the total numbers of entry and exit points in each group.
The next two columns show the mapped CVSS vector and the
calculated base score for each group.

2) Software-Level Conversion: Now that we have calcu-
lated the base score for each group of methods, we can
convert the attack surface into an attack probability as follows.
Suppose there are totally g groups of methods in the attack
surface. Let b; and s; (1 < i < g) denote the base score and
the number of methods of each group, respectively. Assume
on average there will exist one zero day vulnerability for every
n methods, and the probability for attackers to discover such a
vulnerability is po®. In Equation 1, the base score divided by its
range 10 gives the probability that a vulnerability in this group

INote that, here n and po are both intended as normalizing constants, since
their true values are certainly impossible to obtain in practice; as long as those
values stay constant across different software, the equation will yield a relative
metric sufficient for comparing the exploitability of different software based
on both the severity, represented by the base scores b;, and counts, represented
by the number of methods s;, of potential zero day vulnerabilities.

CVSS (Base Metric Group) Attack Surface (Methods) Vectors

AV:[L:0.395,A:0.646,N:1.0] anoymous 1 | [AV:IN,AC:L,Au:N]
AC:[H:0.35,M:0.61,L.:0.71] | Access Rights | unauthenticated | 1 | [AV:N,AC:L,Au:N]
Au:[M:0.45,S:0.56,N:0.704] authenticated 3 | [AV:N,AC:M,Au:S]
admin 4 | [AV:A,AC:H,Au:M]

C:[N:0.0,P:0.275,C:0.66] authenticated 3 [C:PI:PA:C]

1:[N:0.0,P:0.275,C:0.66] Privileges cyrus 4 [C:C,I:.C,A:C]

A:[N:0.0,P:0.275,C:0.66] root 5 [C:C,I:C,A:C]

TABLE I: Mapping Attack Surface to CVSS Base Metrics for Courier IMAP Server v4.1.0 and Cryus IMAP Server v2.2.10

(the Attack Surface Values Borrowed from [3])

Method Group Privilege Access Rights DEP DExp Vector Base Score Attack Probability

Courier

M1 root unauthenticated 28 17 [AV:1.0,AC:0.71,Au:0.704,C:0.66,1:0.66,A:0.66] 10 0.000315

M2 root authenticated 21 10 [AV:1.0,AC:0.61,Au:0.56,C:0.66,1:0.66,A:0.66] 85 0.000184

M3 authenticated authenticated 113 28 [AV:1.0,AC:0.61,Au:0.56,C:0.275,1:0.275,A:0.66] 7.5 0.000809
Cyrus

M1 cyrus unauthenticated 16 17 [AV:1.0,AC:0.71,Au:0.704,C:0.66,1:0.66,A:0.66] 10 0.000132

M2 cyrus authenticated 12 21 [AV:1.0,AC:0.61,Au:0.56,C:0.66,1:0.66,A:0.66] 8.5 0.000112

M3 cyrus admin 13 22 [AV:0.646,AC:0.35,Au:0.45,C:0.66,1:0.66,A:0.66] 6.3 0.0000882

M4 cyrus anonymous 12 21 [AV:1.0,AC:0.71,Au:0.704,C:0.66,1:0.66,A:0.66] 10 0.000132

TABLE II: Method Groups and Their Base Scores for Courier IMAP Server v4.1.0 and Cyrus IMAP Server v2.2.10 (the Attack

Surface Values Borrowed from [3])

is exploitable; multiplying this with p, gives the probability
that the method can be both discovered and exploited; s;/n
gives the number of vulnerabilities out of those s; methods
in this group; the equation therefore gives the probability p
that the software contains at least one exploitable zero day
vulnerability.

g

b =i
=1- 1— W

p il;[l(Po7g)
Example 1. Assuming n = 30 and py = 0.08, we can
calculate p for both software as follows. For Courier, p =
1—(1-0.08%10/10)*/30%(1-0.088.5/10)31/30 (1 —0.08

7.5/10)141/30 — (.384, and similarly for Cyrus, p = 0.273.

)

C. Graph-Based Attack Probability

In Section 11-B, the attack probability obtained using Equa-
tion 1 does not yet capture the relationships among differ-
ent dimensions of attack surface. To address this issue, we
combine different dimensions of attack surface by taking
attackers’ point of view. Specifically, a remote attack over the
network (which is the focus of this paper, as mentioned in
Section 11-A) would typically involve all three dimensions, i.e.,
using communication channels to access and invoke methods
in order to manipulate untrusted data items and fulfill the
attacking goal. This observation shows that there exist causal
relationships between the three dimensions of attack surface,
which will be modeled in two steps as follows.

1) Method Group-level Conversion: First, we divide meth-
ods into groups based on the pair (access right, privilege),
such that the methods in the same group require the same
access right and lead to the same privilege. As an example,
the first column of Table Il gives the group name for each
method group. We will simply use M1 in Courier to refer to
the group of methods restricted by unauthenticated access right
and lead to root privilege in Courier in following discussions.
In group M1 of Courier, attackers only need to exploit one
method out of 45 to gain the corresponding privilege. However,
attackers may exploit multiple methods in one group, e.g.,

due to the lack of sufficient knowledge about such methods.
Taking this into consideration, we define the attack likelihood
of one group of methods as the probability of compromising
at least one method out of the group. Suppose we have totally
s; methods in one group, and let b and p, denote the base
score and the probability for attackers to discover one method,
respectively. In Equation 2, the base score divided by its range
10 gives the probability of finding a method in a software
application to be exploitable; multiplying this with py gives
the probability that the method can be both discovered and
exploited (as mentioned before, po is only intended as a
normalizing constant).

b
p=1-(=pos)" @
Example 2. To compare Courier and Cyrus, we take po asthe
ratio of choosing one method per thousand lines of the source
code. The number of lines of source code for Courier and
Cyrus are 138,283 and 236,321, respectively [15]. Therefore,
we have py = 0.00723 for Courier and py = 0.00423 for
Cyrus. We can calculate p for M2 for both software applica-
tions as follows. For Courier, p = 1 — (1 —0.00723 % 32)3! =
0.174, and similarly M2 in Cyrus, p = 0.112.

2) Software-Level Conversion: In order to aggregate the
attack probabilities for the entire software, we first need a
model of the relationships among the three dimensions of
attack surface. Our model is syntactically equivalent to an
attack graph [16] (we will therefore omit its formal definition)
although our model focuses on resources inside a software
instead of known vulnerabilities inside a network. As an
example, Figure 2 depicts the attack surface graph for both
Courier and Cryus based on the information given in Table I1I.
Each square box in the figure represents a resource in attack
surface (e.g., TCP, SSL, and UNIX socket, which are channels
in attack surface, are represented as the connectivity for the
software applications); the edges point from the pre-conditions
to corresponding resources (e.g., (I'C'P connection) and

<local autt

<local authenticated> <remote

<remote unauthenticated>

D. Aggregating Attack Probabilities inside a Network
Now that we have converted the attack surface of each

SSL
1.0

<SSL connection>

SSL
1.0

<SSL connection>

UNIX socket
1.0

<TCP connection>

<UNIX socket connection>

0279 | 0279 0.174\/‘/\/0.536

M2 M3
0.174 0.536
04 <authenticated>
ot>

M4
0.131

0.4
<rof

Fig. 2: The Attack Surface Graph of Courier (Left) and Cryus
(Right)

(remote unauthenticated) to M1) or from resources to their
post-conditions (e.g., M1 to (root)).

Example 3. In Figure 2 (Left), the remote unauthenticated
privilege is required to establish TCP connections. After a
connection is established, an attacker could invoke the method
under the same privilege graph, e.g., M1. Then, the attacker
could gain the root privilege after accessing M1, which
provides sufficient access right to access all the file groups.

TABLE I1I: Channels and Untrusted Data items [3]

Courier Channels Untrusted Data items
Type Access Rights Group Type Access Rights
TCP remote unauthenticated F1 file root
SSL remote unauthenticated F2 file authenticated
UNIX socket local authenticated F3 file world
Cyrus Channels Untrusted Data Items
TCP remote unauthenticated F1 file root
SSL remote unauthenticated F2 file cyrus
UNIX socket local authenticated F3 file cyrus

As shown in the attack surface graph, channels, which are
modeled as the resources with initially satisfied pre-conditions
(initial conditions), can be directly accessed by attackers.
Methods can be invoked by attackers only if the corresponding
channels are associated with an equivalent or higher privilege.
For example, we consider that attackers passing from the
channel UNIX socket is able to access M1 since UNIX
socket has local authenticated privilege which is higher than
the required access right of M1, unauthenticated). Similarly,
when sending untrusted date items, the privileges gained from
methods should be equivalent or higher than the access right
of untrusted data items. For example, as shown in Table lil,
root is required to send data to F1 in Courier, which means
M3 with authenticated does not have sufficient access right to
send data to F1.

Based on the attack surface graph, the overall attack proba-
bility can be calculated using Bayesian inferences. The overall
attack probability for courier can be calculated as 0.404 and
that for Cryus as 0.329, as depicted in Figure 2.

<UNIX socket connection>

*software to its attack probability, we can easily aggregate such

UNIX socket
1.0

probabilities for all the network resources into a single mea-
sure of network attack surface. We consider two different ways
for such aggregation, the shortest path-based approach [9] and
the Bayesian network (BN)-based approach [10], which reflect
the worst case scenario (i.e., attackers take the shortest attack

o131 path) and the average case scenario, respectively.

To illustrate the idea, Figure 3 shows a partial re-
source graph [10] for our example?. Specifically, each pair
oin plaintext is a security-related condition, e.g., connec-
tion (source,destination) or privilege (privilege,host),
and each triple inside a box is a zero day exploit
(resource, source, destination). The number inside each
box is the corresponding attack probability.

Example 4. In Figure 3, for the shortest path-based ap-
proach [9], we can calculate the attack probability for the
shortest path indicated by the dashed line, (IPCop,0, F) —
(Courier,0,2) — (Firewall Builder,2,4), the probability
for attackersto reach (user, 4) can be calculated asp = 0.48x
0.384 x 0.04 = 0.0074 (the attack probabilities are obtained
using the method introduced in Section I1-B). For the BN-
based approach [10], the attack probability of each resourceis
regarded as the conditional probability that the corresponding
resource can be exploited given that its pre-conditions are all
satisfied. Bayesian inferences then indicate the probability for
attackers to reach (user, 4) is pgoar = 0.016.

More formally, the following formally defines the concept
of network attack surface.

Definition 1 (Network Attack Surface). Given a network with
the set of resources R, the attack probability p(r) as defined
in Equation 1 or Equation 2 for each r € R, the resource
graph G and a given condition ¢, € G,

o let AP denote the collection of all attack paths in G
ending at ¢4, and for each ap € AP, let R(ap) denote
the set of resources involved in ap and denote p(ap) =
I1,cr(ap P(r). We call maz({p(ap) : ap € AP})
(where max(.) returns the maximum value of a set) the
worst case network attack surface wir.t. c,.

o let B = (G’,0) be a BN, where G’ is G annotated with
the attack probabilities and @ is the set of parameters
of the BN, and let C; be the set of conditions without
parents in G’, we call p = P(cy | Veec,c = True) the
average case network attack surface wir.t. .

Discussions Our network attack surface metric addresses a
key limitation of the existing k-zero day safety metric [9],
i.e., it cannot discriminate different resources based on their
relative attack probabilities (consequently the metric simply
counts the number of such resources). On the other hand,
although our network attack surface metric is defined as

2Note that, although the resource graph demonstrated here has a similar
syntax as the attack surface graph discussed in the previous section, they work
at different abstraction levels, i.e., the former models network-level resources
and the latter models resources inside a software.

<user,0>

<0.1> / [<0,F>
L / \
\\; <Apache,0,1> | \| <IPCop,0,F> ,//
7 i 0.48
0.61
S <13> o |‘
<user.1> = <0,3> \
J o [<ProFTRI3>| . N
— — 51y — <
14 [0.39 s S~ 0,2>
\| <Amanda,1,3>] <ProgT31;, , \
0.36 e : Y
Y o Ve k
. <user,3> < — /
<admin,3> . J]
\ — <C0urier,0,2>_"
. <Courier,3,2> 0.384 7
<IPCop,0,F> > ,
; ——
/ J/ v -
<3,4> <user,2> I/ N
N Y .

— s 1

<Firewall Builder,3,4> < Firewall Builder,2,4 >
0.04 0.04

T T
\ /
\

. 4

= <user/4d> <

Fig. 3: The Resource Graph

probabilities, those can be easily converted into other forms
for different applications. For example, given the network
attack surface p as a probability, we can convert p back into
the equivalent number of zero day vulnerabilities along an
attack path as log, s p (here 0.08 is a nominal probability
for zero day vulnerabilities based on CVSS base metrics, as
described in [10]); such a simple count-based metric may be
helpful for interpretation and comparison purposes (we will
use this method in our algorithms and simulations). As another
example, we can also convert p into the equivalent number of
methods s with a given base score b, by inverting Equation 1
as: s = nlog;_, (1 — p). We can therefore evaluate the
network as a single software system with an attack surface
composed of s methods with the base score b (which can also
be mapped back to access rights and privileges if necessary).

I1l. HEURISTIC ALGORITHMS FOR CALCULATING
NETWORK ATTACK SURFACE

In this section, we propose heuristic algorithms to reduce the
effort of calculating attack surface for individual resources in
evaluating the network attack surface. We state the problem in
Section I11-A and design heuristics algorithms in Section 111-B.

A. The Problem statement

The calculation of attack surface is becoming more practical
due to ongoing efforts on automating or approximating the
calculation [14]. However, calculating the attack surface of a
software can still be costly [3], [14] mostly due to the manual
effort and expertise required for analyzing the source code
of the software in order to extract both the counts (e.g., the
total number of methods calling I/O functions) and weights
(e.g., the access rights and privileges). Moreover, even with
automated techniques, the calculation will likely remain a
costly process due to the ever increasing size of modern soft-
ware. For example, all the software mentioned in our running
example in Figure 1 have a large number of lines of source

Procedure Mpath-Topo_Heuristic

Input: Resource graph G, parameter M, and budget N

Output: a sequence of resources P

Method:

1. Let P = ¢ be a sequence of resources

2. Let M S be the sequence of M paths with the least
numbers of exploits in G, with the paths sorted
ascendingly based on such numbers, and the
resources inside each path topologically sorted

3. Let T'= G\ MS, topologically sorted

4. While N >0

5 Iff MS |>0

6. Append the first resource » in M S to P
7. Remove r from M S

8 Else If | T |> 0

9. Append the first resource r in 7" to P
10. Remove r from T'

11. Let N= N-1

12.Return P

Procedure Keynode_Heuristic

Input: Resource graph G, po, p1 € [0, 1], and budget N’

Output: a sequence of resources P

Method:

1. Let P = ¢ be a sequence of resources

2. Let KN = ¢ be a sequence of resources

3. Let p be the network attack surface calculated based on
assigning po to all the resources in G

4. For each resource r in G

5 Calculate p again on G with p; assigned to r

6. If p changes

7 Add rto KN

8. Sort K N based on topological order

9. While N >0

10. If| KN |[>0

11. Append the first resource r in KN to P
12. Remove r from KN

13. Else If | G\ KN |[> 0

14. Append the first resource r to P

15. Remove r from G

16. Let N= N-1

17.Return P

Fig. 4: The Heuristic Algorithms

code: Nginx (171,567), IPCop (271,645), Apache(1,800,402),
MySql (2,731,107), Linux Kernel (18,766,825), and Google
Chrome (14,137,145).

Therefore, we investigate the problem of evaluating the
network attack surface metric proposed in previous section
while reducing the effort of calculating the attack surface of
individual resources. Clearly, there will be a tradeoff between
the cost (i.e., the percentage of network resources whose attack
surface is calculated), and the error in the calculated network
attack surface result (due to the estimation of attack surface for
the non-calculated network resources). Specifically, suppose
the true value of the network attack surface is py,,. and the
calculated value is p.q; (all values described in this section will
be count-based, as described at the end of Section II-D), we
would like to minimize the error w while calculating
the attack surface for no more than'a given percentage of
resources (the budget).

Note that, although the above may seem to be a standard
optimization problem, this is not really the case since the
objective function w contains an unknown value
Pirue that can only be obtained by calculating the attack
surface for all the resources (which defies the very purpose
of reducing the cost). Also, since the problem of finding the
shortest path is already NP-hard [9], which is a special case
of our problem (when the budget is unlimited), the latter is
also intractable. Therefore, we study heuristic algorithms in
the coming section.

B. The Heuristic Algorithms

Our main observation is that, since we can only calculate a
certain percentage of resources under a given budget, what
determines the error is the order of calculation among all
resources, e.g., the error would be minimized if we first
calculate all the resources appearing on the shortest attack path
(however, recall that the shortest path is unknown before the
calculation, as demonstrated in Section I11-A). Therefore, we
first consider several simple heuristics for choosing resources
in the right order, e.g., by exploring the structural properties of
a resource graph. We will then combine those heuristics into
algorithms and evaluate their performance through simulations
later in Section V. We will focus on the worst case network
attack surface, as given in Definition 1, while leaving the
average case network attack surface to future work.

a) Random Choose: The most obvious solution is to
simply choose resources in a completely random fashion,
namely, the random choose heuristic. This provides a baseline
for comparison with other heuristic algorithms. For example,
in Figure 3, if our budget is to calculate the attack surface of at
most two resources, then among the (g) = 15 possible choices,
the worst result is p = 0.46 with an error rate of 0.76, whereas
the best result is p = 1.73 with error rate 0.109. Clearly, this
heuristic may lead to a solution that is far from optimal.

b) Frequency Choose: The key idea is that, since the
same resource may appear on multiple hosts inside a network,
calculating the attack surface for the most frequently seen
resources will provide the most information with the same
cost. For example, in Figure 3, IPCop, Firewall Builder,
Courier and ProFTP all appear twice among totally 10 ex-
ploits. Therefore, if our budget is two, then calculating any
two of them will unveil 4/10 of the exploits (the best result is
p = 1.73 with an error rate of 0.109 by calculating Firewall
Builder and Courier, and the worst result is p = 0.60 with an
error rate 0.69 by calculating IPCop and ProFTP).

¢) Topological Order: The idea is that, since the nodes
closer to the first and last nodes of a resource graph (in
the sense of a topological sorting) tend to be shared among
more attack paths (e.g., the last two exploits are shared
by all paths in Figure 3), it may help to choose resources
based on a topological order among the exploits. We consider
both the topological order and the reversed topological order
heuristics, which choose resources in the same, and opposite
order as topological sorting, respectively. For example, in
Figure 3, suppose our budget is two, the topological order
heuristic will choose Apache and IPCop (the result is p = 0.60
with error rate 0.69) while the reversed topological order will
choose Firewall Builder and Courier (the result is p = 1.73
with error rate 0.109).

d) Shortest Path: This heuristic starts the calculation
with the path with the least number of exploits, which,
although not always the right path in terms of the final result,
may serve as a good starting point. For example, in Figure 3, if
our budget is two, then the shortest path heuristic will choose
Courier and Firewall Builder on the dashed line path (the
result is p = 1.73 with error rate 0.109). In this particular
example, this path happens to be the right path for the final
result, so a larger budget will produce more accurate result.

<0,1> <user,0> <0,F>

\% <V1> / \ <V2> /

0.38 0.58

<1,2>
<0,2>

<user, > <V3>
<14> / | <v4>\> 048 _

N <0ng 0.88
. 24> — user(2)

<user,4> wﬁi
\ <V4>

0.88
—

<user,5>

Fig. 5: An Example of Applying Mpath-Topo and Keynode
Heuristic Algorithms

Although the above simple heuristics may not produce good
results when each of them is used alone, combining these
may lead to algorithms with good performance. The following
presents two such algorithms, whose performance will be
confirmed through simulations in Section V.

€) Mpath-Topo Heuristic Algorithm: This algorithm
combines the topological order and shortest path heuristics as
follows. First, we choose M (an integer parameter) shortest
paths ranked by the number of unique exploits. We next apply
the topological order heuristic to sort resources along each
path, as well as those not on those paths. The algorithm is
more clearly depicted on the left-hand side of Figure 4. Lines
1 to 3 initialize the algorithm and the main loop between lines
4 and 11 chooses resources for calculation as described above.

Example 5. In Figure 5, we have three paths with five distinct
exploits; assuming M = 2 and N = 2, we have MS =
{V1,V4,V3,V5} and P = {V1,V4}; the final result is
p = 0.51 with error rate 0.04.

f) Keynode Heuristic Algorithm: This heuristic algorithm
is based on the idea that a resource is more important for
determining the final value p of network attack surface if
changing its value results in significant changes, e.g., a change
in the path selected for calculating the final result, or a
change in the currently calculated result of p. We combine
this heuristic with the topological order heuristic to form the
algorithm depicted on the right-hand side of Figure 4 (here
we only show the change in p, which can be replaced with
the change in the optimal path, and we will evaluate both
algorithms in the coming section).

Example 6. Suppose we choose py = 0.08 and p; = 1. In
Figure 5, we initially calculate p = 5.12 * 10~* and then
calculate p again by assigning p; to each resource, eg.,
changing V1 from py to p; leads to p = 0.0064 so V1 is
a key node. Smilarly, we can obtain the key node sequence
as KN ={V1,V4,V3,V5} If our budget N = 2, then V1
and V4 will be chosen and the result is p = 0.51 with error
rate 0.04.

IV. INSTANTIATING THE NETWORK ATTACK SURFACE
METRIC

This section provides a case study based on 34 real world
software and discusses various practical issues in instantiating
the proposed network attack surface metric.

A. Case Sudy

To demonstrate how to apply the proposed metric, we revisit
our motivating example shown in Figure 1. The following
three stages correspond to the models introduced in Sec-
tions 11-B, 1I-C, and 1I-D, respectively.

1) The CVSSBased Attack Probability: The information
for instantiating the CVSS-Based attack probability listed in
Table 1V are collected as follows.

o Attack surface: All the 34 software applications we have
analyzed are based on C or C++ language. The methods
that call 1/0 functions (from standard C library [17]) need
to be identified as the entry/exit points in attack sur-
face [3]. To this end, we have implemented a script to au-
tomatically identify methods from the call graphs which
are generated from cflow [18] starting from the main func-
tion. The information about channels is gathered from the
application documentations and manually verified. The
connection functions and methods sometimes can also
be found in the developing documentations, e.g., Amanda
can be connected to in four different ways, namely UDP,
TCP, RSH and SSH [19]. For simplicity, we only consider
one type of untrusted data items in our case study, which
is file, so all the exit points related to files are captured
as the modification to files.

o Access right and privileges: We annotate source code
to identify privilege-related functions. For example, in
Amanda, function access_init is used to authenticate
user access rights from unauthenticated to authenti-
cated; therefore, the methods appearing before this func-
tion has unauthenticated access right and those ap-
pearing afterwards have authenticated. Also, the func-
tion set_root_privs is used to escalate the privileges,
which implies the methods invoked afterwards have root
privilege. Default privilege-related functions [20], such
as setreuid, seteuid, setuid, setfsuid and suid, are also
annotated in source code.

o Mapping table: With the information collected from pre-
vious steps, it is easy to map attack surface to CVSS base
metrics, as already detailed in Section 11-B.

2) The Graph-Based Attack Probability: To instantiate the
graph-based attack probabilities, we collect the following
information.

o po. Different measurements can be used for the size
of software applications, e.g., the number of lines, the
number of functions, or the number of files in the source
code. Our case study is based on the total number of
functions in a software, which is obtained from the
call graph. For example, the Firewall Builder has 552
functions, and Amanda has 34,768 functions.

o Goal condition: We use the root privilege (or maximum
privilege if root is not applicable) as goal conditions in
our case study.

3) The Network Attack Surface: Once the attack proba-
bilities for individual resources are calculated, as shown in
Table 1V, we can instantiate the network attack surface metric
by collecting following additional information.

« Connectivity: This is obtained from the network topology,

as shown in Figure 1.

o Security conditions: The access rights for each appli-
cations are used as pre-conditions, and the privileges
are used as post-conditions. For example, Amanda could
lead to root privilege [19], whereas Firewall Builder can
only lead to authenticated privilege [21]. In addition, by
studying the existing vulnerabilities of those applications,
we obtain other security-related conditions. For example,
Apache has a vulnerability (CVE-2016-1240) allowing
local users to gain root privilege.

« Critical assets: In our study, we consider (user, 4) as the
critical asset (system administrators can choose critical
assets based on their priority).

The results of our case study have already been discussed

in Section Il. The lessons learned will be summarized next as
general discussions for instantiating the metric.

B. Discussions on Instantiating the Proposed Metric

We discuss practical issues in instantiating the network at-
tack surface metric in the following. We focus on open source
projects in this section, and we will discuss how to estimate
the attack surface of closed source software applications and
study the impact of non-calculable software applications in
Section V.

CVSS-Based attack probability: As demonstrated in our case
study, to instantiate the CVSS-Based attack probability, the
key challenge is to collect information about each dimension
(channels, methods, and untrusted data items) of the attack
surface, the access right and privileges, and the mapping
between attack surface and CVSS base metrics. First, to
calculate the attack surface, existing tools, e.g., cflow [18], can
be used to generate call graphs for source code written in C
language. Automated scripts can then be developed to identify
the entry/exit points as the functions that call input/output
functions. Channels and untrusted data items can be identified
from documentations or observed at runtime [3]. Second, the
privileges for the three dimensions can be identified based on
a set of uid-setting system calls which associate with change
of privileges [20]. The access right requires the study of au-
thentication functions in source code, e.g., the methods can be
invoked only after user authentications should be considered
as authenticated access rights [3]. Finally, establishing the
mapping with CVSS vectors requires domain experts to assign
numeric values based on the relationships between attack
surface results and CVSS base metrics. The aggregated attack
surface base score can be calculated using the CVSS base
score calculator [22].

Graph-Based Attack Probability: To instantiate the graph-
based attack probability, we need to collect additional infor-
mation as follows. First, we need to identify the size of each

Method Group Privilege Access Rights Count Vector Base Score Attack Probability
Amanda

M1 unauthenticated unauthenticated 834 [AV:1.0,AC:0.71,Au:0.704,C:0,1:0,A:0] 0 0

M2 root unauthenticated 672 [AV:1.0,AC:0.71,Au:0.704,C:0.66,1:0.66,A:0.66] 10 0.0191

M3 authenticated authenticated 1953 [AV:1.0,AC:0.61,Au:0.56,C:0.275,1:0.275,A:0.66] 7.5 0.0415

M4 root authenticated 297 [AV:1.0,AC:0.61,Au:0.56,C:0.66,1:0.66,A:0.66] 8.5 0.00723

Firewall Builder
M1 unauthenticated unauthenticated 46 [AV:1.0,AC:0.71,Au:0.704,C:0,1:0,A:0] 10 0.082
M2 authenticated authenticated 28 [AV:1.0,AC:0.61,Au:0.56,C:0.275,1:0.275,A:0.66] 7.5 0.037

TABLE IV: Method Groups and Their Base Scores for Amanda and Firewall Builder

TABLE V: Amanda’s Channels and Untrusted Data items

Amanda Channels Untrusted Data items

Type Access Rights Count | Type Access Rights Count
TCP remote unauthenticated 2 file root 27
SSL remote unauthenticated 2 file authenticated 6
RSH remote authenticated 1 file unauthenticated 27
SSH remote unauthenticated 1

TCP authenticated 2

UDP authenticated 2

Firewall Builder Channels Untrusted Data Items

TCP remote unauthenticated 2 file authenticated 22
UDP remote unauthenticated 2
IP local authenticated 1

software, e.g., in the number of lines of source code or the
number of functions. It is easy to find such information about
open source projects, e.g., through the Open Hub [15], or to
calculate it using simple scripts. Second, the goal condition can
be identified by examining which privileges can be obtained
by exploiting the software.

Network Attack Surface: To instantiate the network attack
surface metric, we need to collect following additional infor-
mation. The connectivity information can be obtained either
from existing network topology or using network scanners,
e.g., Nessus [23]. To identify security conditions required for
accessing hosts or resources, the configuration of firewalls and
hosts, and the local policies, e.g., authentication, may needed
to be examined. Some security conditions associated with the
resources can also be derived during the instantiation of attack
probabilities of individual software. Finally, critical assets can
be assigned based on organization’s specific needs and priority.

V. EXPERIMENTAL RESULTS

In this section, we first examine the correlation between
our models introduced in Section Il and the vulnerabilities of
real world software. We then conduct simulations to evalu-
ate the performance of our heuristic algorithms proposed in
Section I11.

A. Correlation between Attack Surface and Vulnerabilities

Since our model for converting attack surface to attack prob-
ability in Section Il is based on the hypothesis that attack sur-
face reflects a software’s likelihood of having vulnerabilities,
we investigate this correlation by conducting experiments with
real software. We examine the correlation both for different
software and for different versions of the same software.

First, we examine 34 popular software applications and
their correlation results are presented in Figure 6(a). The
main criteria in choosing those software applications are as
follows. First, we need to ensure their attack surface can be
calculated with reasonable effort (e.g., written in C or C++ and

with source codes of reasonable sizes to facilitate the manual
analysis required for calculating attack surface). Second, we
only choose software applications with existing vulnerabilities
listed in the NVD vulnerability database to facilitate our
experiments. The name of each software can be found in the
Appendix based on its index. We manually study the source
code of each software in order to calculate the attack surface,
and subsequently convert the result into attack probability
using the method mentioned in Section 11-B. In Figure 6(a),
the left y-axis and the green line with round markers show
the attack surface (converted to attack probability) multiplied
by the days of exposure (i.e., the number of days since the
software was released) of each software since vulnerabilities
take time to be discovered even though the attack surface of the
software remains the same over time. The right y-axis and the
red line with star markers show the number of vulnerabilities
found for the same software in NVD [24].

@ "
25000, 80 %120 90
=] [0 Attack Surface | [Vulnerability =} OO Attack Surface 10.0] | gy

& M0 2 1000, %X Attack Surface 10| §
a 4000 160 g)d} Attack Surface 1.0.2 ’70§
g B S 800%%g 1602
£'3000 pog g X 50 w0l 2
= 08 # 600 105
o = @ 0.5
< 2000, 130E S E}
g g F 000 1302
% 1000 e 1203
o N 0% % IS
£ vt GYITE QL Wty £ X

S %0 15 20 35 30 38 S =10 1520 2

of Index

(a) (b
Fig. 6: Correlation between Attack Surface and the Number
of Vulnerabilities for Different Software (a) and Different
Versions of OpenSSL (b)

Results and Implications. From the results, we can see
that there is a positive correlation between the number of
vulnerabilities and the attack surface multiplied by exposure
days for most of the software (specifically, 25 out of 34). The
correlation is unclear for the last few software (after index
number 25). We believe the reason lies in other related factors
affecting vulnerability discovery, e.g., the market share of a
software, popularity of a software among attackers, and the
security expertise level of typical users of a software. For
example, index 33 is freetype, a popular software development
library used for rendering font-related operations, which is
widely used by modern video games, Opera for Wii, and many
other projects [25]. Such a widely used software is usually
more attractive for attackers to discover vulnerabilities, and
hence becomes an outlier in our results. As another example,
index 34 is Amanda, a network-based backup system, which
has only one vulnerability, even though its attack surface
multiplied by exposure days is relative large. We believe the
reason could be that such a backup system is usually hosted in
enterprise networks and operated by administrators with more

security expertise and awareness, which may have rendered
the software less attractive to attackers.

Second, we examine 53 different versions of OpenSSL
along 3 version branches, 1.1.0, 1.0.1, and 1.0.2, respectively,
and the results are presented in Figure 6(b). The study of
different versions of the same software reduces the influence
of aforementioned unrelated factors in discovering the vulner-
abilities (e.g., market share). The index indicates the version
numbers in chronologically order. From the results, we can
see that the number of vulnerabilities has a similar trend with
the attack surface multiplied by exposure days for all three
branches. The branch with larger values for attack surface
also has more vulnerabilities. For all three branches, we can
see the maximum number of vulnerabilities always appears
somewhere in the middle of the branch likely because, with a
major change of version branch, it takes time for user adoption
and also for attackers to change the focus.

The above experiments, although are still of a limited scale,
show a promising result supporting our hypothesis that there
is a positive correlation between the attack surface and the
number of vulnerabilities. Our future work will expand the
scope and scale of the experiments.

B. Performance of Heuristic Algorithms

In this section, we study the performance of our proposed
heuristic algorithms in general. Since there currently does not
exist any publicly available dataset of resource graphs, we
generate synthetic resource graphs by starting from small but
realistic seed graphs like the one shown in Fig. 3 and then
injecting random nodes and edges in a random but realistic
fashion (e.g., each exploit can only have a few pre- and post-
conditions). All the results are collected using a computer
equipped with a 3.0 GHz CPU and 8GB RAM in the Python
environment under Ubuntu 14.04 LTS.

The objective of the first two simulations is to evaluate the
error rate of our heuristics (presented in Section I11-B). The
error rate is defined in the same way as in Section II-D. The
cost is defined as the percentage of resources whose attack
surface is calculated, and denoted as «.. The reason we choose
the percentage of resources instead of the absolute number
is that evaluating a larger network naturally implies a larger
budget will be required.

Figure 7(a) shows the error vs. the percentage of calculated
resources («) for simple heuristics and Figure 7(b) shows the
same for the heuristic algorithms. The y-axis is shown in
reversed scale in both figures to show the increasing accuracy
for a larger «. Figure 7(c) depicts the processing time of
the algorithms. In all simulations, for each configuration, we
repeat 500 times to obtain the average results.

Results and Implications. From Figure 7 (a), we have
following observations. First of all, with the increase of «, the
error generally decreases as expected (e.g., « = 1 means we
calculate all the resources). The green line with round markers
is the baseline for comparison, which represents the results of
the random choose heuristic. The error of this heuristic reduces
almost linearly in both simulations. The frequency choose
heuristic represented by the red line with vertical markers

10

has the worst error among all the heuristics. The reason is
that, the repetition of a resource does not necessarily mean the
importance of this resource in determining the final result. The
blue line with square and purple line with star represents the
reversed topological order heuristic and the topological order
heuristic, respectively. Both heuristics start worse than the
random heuristic, and the reverse topological order stays worse
than the random heuristic, but the topological order heuristic
reduces and later becomes better than random. The reason is
that, the reversed topological order tends to choose resources
equally among all the paths, since the paths converge towards
the end of the graph. On the other hand, the topological order
heuristic chooses from initial nodes, which might converge
into one path and give better results. The most accurate is
the shortest path heuristic algorithm, which combines the
topological order and shortest path heuristics. The error rate
of this algorithm becomes flat when it finishes calculating the
shortest path and starts to calculate other resources.

Figure 7(b) depicts the error rate of the heuristic algorithms
combining multiple heuristics. We can see that the keynode
and the mpath topo algorithms produce very good results, e.g.,
less than 0.05 error rate with only 20% of resources calculated.
Such results show a promising solution for obtaining relatively
accurate network attack surface results without incurring too
much cost for calculation. From the results we can see that
the mpath topo algorithm has less error than mpath frequency.
For the keynode heuristic algorithm, we test two different
variations, one based on the change of shortest path and the
other based on the change of the calculated result. From the
results, we can see that those have very different error rates,
because the result-based keynode algorithm tends to gather
the resources in the shortest path, whereas the path-based
algorithm tends to avoid such resources.

Figure 7 (c) depicts the processing time. From the results,
we can see that the keynode path and keynode result algo-
rithms have almost the same processing time, because the
majority of processing is used to preselect the keynode set.
The processing time for mpath frequency is higher than mpath
topo, because each iteration generates new m-shortest paths
and we need to reorder frequently. For mpah topo, we only
gather m-shortest paths once and then order them by the
topological order. The random choose heuristic has the lowest
processing time as expected. Overall, we can conclude that
the mpath topo algorithm is the best choice in terms of both
error rate and processing time.

C. Comparison with k-Zero Day Safety

In this section, we compare the proposed network attack
surface metric (calculated based on the brute force algorithm)
and the result of the keynode heuristic algorithm (with 10%
of the calculation effort) to the existing k-zero day safety
metric [9]. The objective is to demonstrate the significance
of discriminating different network resources based on their
attack surface, which is a key contribution of our metric in
contrast to k-zero day safety (which simply regards all network
resources as equally likely to have unknown vulnerabilities) .

First, we study the difference between k-zero day safety
and network attack surface with the increasing length of

Processing Time(s)

0.00 0.00 T T T 0.020
shortest 0 4_AA keynode path
0.05 g——*(s MIJ(; 0.05 - . %keyﬂode
random \q-,)/ mpath frequency 0.015
0.10H|A 2 frequency 0.10 o3
s OO topoReverse ;s = i i
5 G0 203100 mmim 0010
= <] Ookeynode .% 0.2
0.20 0.20 Y% mpath topo 8
A—A mpath frequency g 0.1 0.005
0.25 0.25 I keynode path =]
& OO random A P
03010z 0504050607080910 1020304050607 08091L0 OO 100 000
a o #tof Nodes
(@) (b) (c)

Fig. 7: The Cost vs. Error for Simple Heuristics (a) and for the Heuristic Algorithms (b), and the Processing Time (c)

50 keynode
Network Attack Surface +

kod

keynode

kod
40

Metric

20

+
0 ,i"‘ anid!
) ;;}imimlill”“”“

10

T T

10

20 30 40
Length of the Shortest Path

50 20 30 40

Length of the Shortest Path

50

Fig. 8: The Comparison between the k-Zero Day Safety Metric
and the Network Attack Surface Metric (a), the Error Rate (b)
with the increasing length of the shortest path

keynode
Network Attack Surface
k0d

keynode
kod

Y

0.050 0075 0.100
% of Initial Satisfied Nodes

0.050 0.075
% of Initial Satisfied Nodes

0.000 0.025 0.100 0.125 0.000 0.025 0.125

Fig. 9: The Comparison between the k-Zero Day Safety Metric
and the Network Attack Surface Metric (a), the Error Rate (b)
with the increasing percentage of initially satisfied nodes

the shortest path. Figure 8(a) shows the metric results, and
Figure 8(b) shows the error rate for the k-zero day safety
metric and keynode heuristic algorithm (both in contrast to
the network attack surface metric).

Results and Implications: As can be seen in Figure 8(a),
although in general the metric values all increase in the length
of shortest path, the network attack surface metric (as well as
the keynode heuristic algorithm) and the k-zero day safety
metric do not follow the same trend. Specifically, the increase
of the network attack surface metric is significantly slower than
that of the k-zero day safety metric. The absolute difference
between the two metrics increases with the length of the
shortest path. This can be explained by the fact that, by simply
counting the number of distinct resources on the shortest path,

11

the k-zero day safety essentially ignores the difference between
the attack surface of different resources, and consequently
yields an upper bound of the network attack surface metric.
The implications of those results are as follows. First, the
error introduced in the k-zero day safety metric may become
significant, especially for larger and well guarded networks
with relatively long shortest paths (which are the main target
of our work). For smaller networks or networks that are not
well guarded (e.g., campus networks) with shorter shortest
paths, the absolute difference between the two metrics may
be smaller but the relative error rate may still be significant,
as shown in Figure 8(b). Finally, with only 10% of calculation
effort, our keynode heuristic algorithm could already estimate
the network attack surface value with reasonably small error,
which shows its potential as a relatively accurate estimation
requiring far less effort.

Figure 9 shows similar results for the metrics vs. the
increasing percentage of the initial satisfied nodes in resource
graphs (i.e., initially exploitable resources, which provides
another indicator about how well guarded the network is).
Figure 9(a) demonstrate the absolute values of metrics, while
Figure 9(b) shows the error rate.

Results and Implications: From Figure 9, we can have the
following observations. First, both network attack surface and
k-zero day safety metrics are less dependent on the initially
satisfied nodes as they did in the previous case. This is because
the initial satisfied nodes may not be directly correlated with
the length of the shortest path. Second, despite the lack of
clear trends, similar comparison results between the metrics
can still be observed. The larger errors and error rates between
k-zero day safety metric and the network attack surface metric
(as well as the heuristic algorithm) demonstrate the fact that
the k-zero day safety metric may become significantly less
accurate, whereas our keynode heuristic algorithm provides a
more accurate estimation.

D. The Impact of Non-Calculatable Resources

Instead of calculating attack surface for a smaller subset
of software in the network, as studied in previous section,
estimating the attack surface of a software by only considering
a subset of its resources (e.g., entry/exit points), is another
technique to reduce the total cost. For example, the Microsoft
research team has proposed attack surface approximation
method based on stack trace analysis [14]. In a trial on
Windows 8, the authors discover that the approximation selects

only 48.6% of the software but includes 94.6% of the known
vulnerabilities. In this section, we would like to evaluate the
impact of this idea through simulations.

In addition, fully calculating the attack surface of a software
may become infeasible for either closed source software
or very large open source software. For example, statistical
results show 84.34% of desktop operating systems are Win-
dows [26], and even some open source software may become
too large for the calculation, e.g., Debian’s source lines of
code (SLOC) increases from 55-59 millions (Debian 2.2 in
2000) to 419 million (Debian 7.0 in 2012). Therefore, we have
divided software applications into three categories in terms of
the feasibility of calculating attack surface as follows.

o Non-Calculable Resources: The software which do not
have accessible source code and hence their attack surface
cannot be calculated.

Partially Calculable Resources. The open source soft-
ware with too large SLOCs for fully calculating the
attack surface. A feasible solution is to estimate the attack
surface by only considering part of the software.

Fully Calculable Resources: The small to medium open
source software for which it is generally feasible to
generate call graphs and fully calculate the attack surface.

The first simulation studies the impact of partially-
calculable and non-calculable resources. The error rate is
defined in the same way as in the previous simulations. The
budget is defined as the percentage of effort allowed to spend
on calculating attack surface in one network, denoted as
«. The partially-calculable rate is defined as the percentage
of attack surface calculated for a resource, denoted as f.
Calculating g percent of a software application may result
in an approximated value of the attack surface. Compared to
the true value of attack probability, the approximated value
may be either lower or higher because the chosen subset of
source code may include either less or more 1/O function calls.
Therefore, in this simulation, we set an estimation range for
the approximated attack probability value. Assuming the true
attack probability in a software application is p, the estimation
range is defined as [(1 — 3) * p, min((2 — B) * p, 1)], which
ranges from (1 —) = p lower than the true value to (1 —3)*p
higher. An approximated attack probability value is randomly
generated from the estimation range.

0.0 a=50% 0.00 < g(: 80%
0.05
0.2 —(0.10
04) (0I5
m: — 50.20
0.6 knode. knode
Ye-c mpath topo 0.25 Ye-5 mpath topo
0.8 AA mpath frenquency 0.30HAA mpath frenquency
*ON - knode path 0.35 ' knode path
OO random ““NOO random
L 0 02 04 06 08 1.0 04 0 02 04 06 08 1.0
B B

Fig. 10: The Error of the Algorithms with o = 50% (a) and
a = 80% (b)

Unlike in the previous simulations, « only represents the

12

percentage of effort to calculate attack surface in this simu-
lation, since the percentage of resources whose attack surface
are calculated will depend on both « and 3. After calculating
« percent of the resources in one network, we will still be
able to calculate o — « * (8 percent of attack surface with
the remaining budget. The overall percentage of calculated
resources can be written as Y.~ o (1 — j3)%, which is a
geometric series with the constant ratio (1 —) yielding the
final result of <. Notice that when o > 3, we have extra
budget calculate attack surface. In this case, we apply the extra
budget to fully calculate the remaining resources according to
the algorithms’ order of calculation.

Results and Implications: In Figure 10(a), o = 50% means
the effort budget is 50% of the overall effort to fully calculate
every attack surface in the network, so with 5 < 50% (5> 1),
we have extra budget to calculate more resources according
to the algorithms’ order. A smaller value of 5 means more
extra budget will be left for full calculation after the initial
step of partial calculation is done. Comparing to o = 50%
in Figure 7(a) and Figure 7(b), the error rates are smaller
when (3 is smaller than 30%. This is mostly because the effort
spent on the partial calculation provides a rough ranking of the
resources, and the remaining efforts are used to fully calculate
those resources that contribute the most to the final result of
network attack surface. When g increases to 40%, the error
rates of algorithms become worse than those under o = 50%
in Figure 7(a) and Figure 7(b), because the remaining efforts
are not sufficient to fully calculate the resources on the shortest
path.

We can also see the error rate increases until o = /3, which
is the worst case in Figure 10(a) since o = [means all the
attack probabilities used to calculate the final result are par-
tially calculated (the attack probability value for each resource
falls in the estimation range mentioned earlier). Similar trends
can be observed in Figure 10(b) when 8 < o = 80%. We
can see that the error rate is 0.5 when 3 = 50% because the
approximation range is set as 50% lower to 50% higher than
the exact attack surface (the maximum value for the upper
bound is 1). The error rate is 0.28 when o = 8 = 80% which
is still close to our approximation range of 20% lower to 20%
higher than the true value of attack probability.

Unlike the increasing trend of the error rates when 5 <
50%, the error rates are decreasing when 3 > « for all the
algorithms in both Figure 10(a) and Figure 10(b), because the
approximated attack probability is closer to the true value
of attack probability when more source code are used for
calculating attack surface. When 8 = 100%, this simulation
is effectively the same as the previous simulation.

While the previous simulations show the relationships of
error rates and 3 with fixed « for the algorithms, Figure 11(a)
presents the relationships of error rate and « with fixed
B = 60%. When a < 3, only « percent of the resources can
be partially calculated, and the error rate decreases with the
percentage of calculated resources. When « > f3, extra budget
can be applied again to fully calculate resources according to
the algorithms’ chosen order, and the error rate is thus different
for different algorithms (knode and mpath topo yield the best
chosen order). Figure 11(b) shows the overall relationships

N * mpath topo
Ye-v¢ mpath topo

/V
. y < 1.0
WO bo
0102030405 06070809 L0 1'00'90'80'7“ %(}%g%
.1 0.2 0.3 0.4 0. A .6 0.7.0.8 0.9 1. /90 '50'40-3020.10.#

\AA mpath frenquency
- knode path

QO random

Fig. 11: (a) The Error of the Algorithms with o = 50% (b)
The Error in « and

among «, 8 and the error rate. The concave upward part in
the 3D graph corresponds to the special case of o = 3, as
previously discussed.

Finally, the next simulation focuses on the impact of non-
calculable resources. The definition of « is the same as in the
first simulation, i.e., the percentage of resources whose attack
surface is calculated. We assign the attack probability for non-
calculable resources based on the average value among the
CVSS scores of all vulnerabilities in the National Vulnerability
Database (NVD) [24]), which is 0.68, in this simulation.

0.2on-calculable Attack Surface = 50% 0.45
KX knode I knode path
Ye-v¢ mpath topo OQ random

A\ mpath frenquency

0 02 04 06 08 1.0 0'28.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
a Non-calculable

(@) (b)
Fig. 12: The Error vs. « of Algorithms with 50% Non-
Calculable Resources (a) and the Percentage of Non-
Calculable Resources vs. Error (b)

Results and Implications. Figure 12(a) shows the impact on
our algorithms when 50% of the resources are non-calculable
in a network. The error rate decreases till « = 50%, while
error rate remains the same when « > 50%. We can see
the algorithms help to reduce the error rate and the knode
and mpath topo algorithms give the best performance in all
the simulations. Next, Figure 12(b) studies the impact of
non-calculable resources compared to a brute force algorithm
(i.e., regardless of the budget, calculating 100% for every
calculable attack surface). The error rate increases linearly
with the increasing ratio of non-calculable resources in the
network. When non-calculable resources reach 100%, our
metric essentially becomes equivalent to the k-zero day safety
metric [9] (which is a special case of our metric in which no
attack surface is calculated).

13

V1. RELATED WORK

The concept of attack surface is originally proposed for
specific software, e.g., Windows, and requires domain-specific
expertise to formulate and implement [27]. Later on, the
concept is generalized using formal models and becomes
applicable to all software [28]. Furthermore, it is refined
and applied to large scale software, and its calculation can
be assisted by automatically generated call graphs [3], [29].
Attack surface has attracted significant attentions over the
years. It is used as a metric to evaluate Android’s message-
passing system [5], in kernel tailing [30], and also serves as a
foundation in Moving Target Defense, which basically aims to
change the attack surface over time so to make attackers’ job
harder [7], [31]. Others aim to expand the scope of this concept
to other domains, such as the six-way attack surfaces between
users, services, and cloud systems [4], and the approximation
of attack surface for modern automobiles [6]. The study
on automating the calculation of attack surface is another
interesting domain, e.g., COPES uses static analysis from
bytecode to calculate attack surface and to secure permission-
based software [32]. Stack traces from user crash reports is
used to approximate attack surface automatically [14]. The
correlation between attack surface and vulnerabilities has also
been investigated, such as using attack surface entry points and
reachability to assess the risk of vulnerability [33]. A study
about the relationship between attack surface and the vulner-
ability density is given in [34], although the result is only
based on two releases of Apache HTTP Server, which gives
little clue to the general existence of such a correlation. The
so-called attack graph surface introduced in [35] is inspired
by attack surface but it focuses on identifying a critical set of
attack paths in an attack graph, which is complementary to
our work in the sense that we can employ this technique to
efficiently identify the shortest path, whereas our metric may
potentially be applied to the critical attack paths. Despite such
interest in attack surface, to the best of our knowledge, most
existing works that apply the concept to a higher abstraction
level are still limited to intuitive and informal notions, and this
is the first formal attack surface metric at the network level.

The research on security metrics in general has attracted
much attention lately [8]. There exist standardization efforts on
vulnerability assessment including the Common Vulnerability
Scoring System (CVSS) [1], which measures vulnerabilities
in isolation. The NIST’s efforts on standardizing security
metrics are also given in [36] and more recently in [37].
Earlier work include the a metric in terms of time and efforts
based on a Markov model [38]. More recently, several security
metrics are proposed by combining CVSS scores based on
attack graphs [39], [40]. The minimum efforts required for
executing each exploit is used as a metric in [41], [42].
A mean time-to-compromise metric is proposed based on
the predator state-space model (SSM) used in the biological
sciences in [43]. While those metrics are mostly developed
for known vulnerabilities, fewer work are capable of dealing
with zero day attacks. A few exceptions include an empirical
study of the total number of zero day vulnerabilities available
on a single day based on existing data [44] and an effort on

ordering different applications in a system by the seriousness
of consequences of having a single zero day vulnerability [45].
More recently, the k-zero day safety model [9], [11] and the
network diversity model [10], [12] both attempt to model the
risk of zero day vulnerabilities, but their common limitation
is the lack of capability in distinguishing between different
resources based on their relative likelihood of having such
vulnerabilities. In other words, those works essentially regard
all resources as equally likely to include zero day vulnerabil-
ities. This is a limitation since different software may have
significantly different attack surface and thus the likelihood of
such vulnerabilities may also differ. The key contribution of
this paper is exactly to address this limitation through lifting
the attack surface concept to the network level. On the other
hand, this paper leverages the resource graph concept and the
Bayesian model in [10], [12] and the k-zero day safety model
in [9], [11] (attack surface is not mentioned in those works).

VII. LIMITATIONS AND CONCLUSION

An intuitive notion of attack surface at the network level
has prevented applications from inheriting the formal and
quantitative reasoning power of the original attack surface
metric. In this paper, we have designed methods for lifting
this concept to the network level as a formal security metric
for measuring networks’ resilience against zero day attacks.
Specifically, we have shown two ways for converting the attack
surface of each individual software into an attack probability
and subsequently aggregating such attack probabilities into
a single measure of network attack surface based on the
causal relationships between different resources. \We have also
presented heuristic algorithms which can evaluate the network
attack surface while limiting the effort of calculating the attack
surface for individual software within a given budget. To
evaluate the proposed models, we have studied the correlation
between attack surface and vulnerabilities using real world
software, and our experimental results show a positive corre-
lation does exist between the two. To evaluate the proposed
heuristic algorithms, we have shown through simulations that
the network attack surface metric can be accurately estimated
by calculating the attack surface for only a small percentage
of resources.

The following discusses limitations and future directions.

o First, our experiments on the correlation between attack
surface and vulnerabilities are still of relatively small
scale and scope; a future direction is to expand these
and to consider also other factors, such as market share
data and exploit information.

Second, there lack automated and mature tools for as-
sisting the calculation of attack surface. One of our
ongoing work is the development of an automated tool for
calculating the attack surface for open source software.
Third, the calculation of attack surface requires source
code and thus is not applicable to closed source soft-
ware. An interesting future direction is to address this
through adapting binary analysis techniques (e.g., clone
detection).

14

« Fourth, we have not considered the average case network
attack surface in the study of heuristic algorithms, and
this will be a future direction.

Acknowledgements. Authors with Concordia University are
partially supported by the Natural Sciences and Engineering
Research Council of Canada under Discovery Grant N01035.
Sushil Jajodia was supported in part by the National Institute
of Standards and Technology grants 60NANB16D287 and
60NANB18D168, National Science Foundation under grant
11P-1266147, Army Research Office under grant W911NF-13-
1-0421, and Office of Naval Research under grant NO0014-15-
1-2007.

REFERENCES
[1]
[2]
[3]
[4]

P. Mell, K. Scarfone, and S. Romanosky, “Common vulnerability scoring
system,” |IEEE Security & Privacy, vol. 4, no. 6, pp. 85-89, 2006.

J. McHugh, “Quality of protection: Measuring the unmeasurable?,” in
Proceedings of the 2nd ACM QoP, pp. 1-2, 2006.

P. Manadhata and J. Wing, “An attack surface metric,” IEEE Trans.
Softw. Eng., vol. 37, pp. 371-386, May 2011.

N. Gruschka and M. Jensen, “Attack surfaces: A taxonomy for attacks
on cloud services,” in 2010 |EEE 3rd international conference on cloud
computing, pp. 276-279, IEEE, 2010.

D. Kantola, E. Chin, W. He, and D. Wagner, “Reducing attack surfaces
for intra-application communication in android,” in Proceedings of the
second ACM workshop on Security and privacy in smartphones and
mobile devices, pp. 69-80, ACM, 2012.

S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno, et al.,
“Comprehensive experimental analyses of automotive attack surfaces.,”
in USENIX Security Symposium, San Francisco, 2011.

S. Jajodia, A. Ghosh, V. Swarup, C. Wang, and X. Wang, Moving Target
Defense: Creating Asymmetric Uncertainty for Cyber Threats. Springer,
1st ed., 2011.

M. Pendleton, R. Garcia-Lebron, J. Cho, and S. Xu, “A survey on
systems security metrics,” ACM Comput. Surv., vol. 49, pp. 62:1-62:35,
Dec. 2016.

L. Wang, S. Jajodia, A. Singhal, P. Cheng, and S. Noel, “k-zero day
safety: A network security metric for measuring the risk of unknown
vulnerabilities,” |IEEE Transactions on Dependable and Secure Comput-
ing, vol. 11, no. 1, pp. 30-44, 2013.

M. Zhang, L. Wang, S. Jajodia, A. Singhal, and M. Albanese, “Network
diversity: a security metric for evaluating the resilience of networks
against zero-day attacks,” |EEE Transactions on Information Forensics
and Security, vol. 11, no. 5, pp. 1071-1086, 2016.

L. Wang, S. Jajodia, A. Singhal, and S. Noel, “k-zero day safety:
Measuring the security risk of networks against unknown attacks,” in
Proceedings of the 15th European Symposium on Research in Computer
Security (ESORICS), pp. 573-587, 2010.

L. Wang, M. Zhang, S. Jajodia, A. Singhal, and M. Albanese, “Modeling
network diversity for evaluating the robustness of networks against zero-
day attacks,” in Proceedings of ESORICS 14, pp. 494-511, 2014.

A. Reid, J. Lorenz, and C. A. Schmidt, Introducing Routing And
Switching In The Enterprise, CCNA Discovery Learning Guide. Cisco
Press, 2008.

C. Theisen, K. Herzig, P. Morrison, B. Murphy, and L. Williams,
“Approximating attack surfaces with stack traces,” in Proceedings of
the 37th International Conference on Software Engineering-Volume 2,
pp. 199-208, IEEE Press, 2015.

“Open hub.” available at:https://www.openhub.net/, April 19, 2017.

O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing, “Automated
generation and analysis of attack graphs,” in Proceedings of the 2002
IEEE Symposium on Security and Privacy, 2002.

C. ANSI, “lsofiec 9899: Tc2.www.open-std.org/jtcl/sc22,”
WG14/www/docs, no. 1256, 2005.

“Gnu cflow.” available at :http://www.gnu.org/software/cflow/, April
10,2016.

“Amanda protocol.” available at:http://wiki.zmanda.com/index.php/
Developer_documentation, April 19, 2017.

H. Chen, D. Wagner, and D. Dean, “Setuid demystified,” in USENIX
Security Symposium, pp. 171-190, 2002.

N

[5]

[6]

[71

(8]

[]

[10]

(11]

[12]

(13]

[14]

[15]
[16]
[17]
(18]
[19]

[20]

[21]
[22]
[23]
[24]

[25]
[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

“Firewall builder”” available at: http://www.fwbuilder.org/4.0/
documentation.shtml, April 19, 2017.

“Common vulnerability scoring system version 2 calculator.” available
at:https://nvd.nist.gov/cvss/v2-calculator?, April 19, 2017.

“Nessus network security scanner.” available at:http://www.tenable.com/
products/nessus-vulnerability-scanner, April 19,2017,

“National vulnerability database.” available at: http://www.nvd.org, May
9, 2008.

“Freetype.” available at:https://en.wikipedia.org/wiki/FreeType.

“Stat counter.” available at:http://gs.statcounter.com/os-market-share/
desktop/worldwide.

M. Howard, J. Pincus, and J. Wing, “Measuring relative attack surfaces,”
in Workshop on Advanced Developments in Software and Systems
Security, 2003.

P. Manadhata and J. Wing, “Measuring a system’s attack surface.”
Technical Report CMU-CS-04-102, 2004.

P. Manadhata and J. Wing, “An attack surface metric.” Technical Report
CMU-CS-05-155, 2005.

A. Kurmus, R. Tartler, D. Dorneanu, B. Heinloth, V. Rothberg,
A. Ruprecht, W. Schroder-Preikschat, D. Lohmann, and R. Kapitza, “At-
tack surface metrics and automated compile-time os kernel tailoring.,”
in NDSS, 2013.

S. Jajodia, A. Ghosh, V. S. Subrahmanian, V. Swarup, C. Wang, and
X. Wang, Moving Target Defense I1: Application of Game Theory and
Adversarial Modeling. Springer, 2012.

A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, “Automatically
securing permission-based software by reducing the attack surface:
An application to android,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, pp. 274—
277, ACM, 2012.

A. A. Younis, Y. K. Malaiya, and I. Ray, “Using attack surface entry
points and reachability analysis to assess the risk of software vulnera-
bility exploitability,” in High-Assurance Systems Engineering (HASE),
2014 |EEE 15th International Symposium on, pp. 1-8, IEEE, 2014.

A. A. Younis and Y. K. Malaiya, “Relationship between attack surface
and vulnerability density: A case study on apache http server,” in
Proceedings on the International Conference on Internet Computing
(ICOMP), p. 1, The Steering Committee of The World Congress in
Computer Science, Computer Engineering and Applied Computing
(WorldComp), 2012.

H. Huang, S. Zhang, X. Ou, A. Prakash, and K. Sakallah, “Distilling
critical attack graph surface iteratively through minimum-cost sat solv-
ing,” in Proceedings of the 27th Annual Computer Security Applications
Conference, ACSAC 11, (New York, NY, USA), pp. 31-40, ACM,
2011.

National Institute of Standards and Technology, “Technology assess-
ment: Methods for measuring the level of computer security.” NIST
Special Publication 500-133, 1985.

M. Swanson, N. Bartol, J. Sabato, J. Hash, and L. Graffo, “Security
metrics guide for information technology systems.” NIST Special Pub-
lication 800-55, 2003.

M. Dacier, “Towards quantitative evaluation of computer security.” Ph.D.
Thesis, Institut National Polytechnique de Toulouse, 1994.

L. Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia, “An attack
graph-based probabilistic security metric,” in Proceedings of the 22nd
IFIP DBSec, 2008.

M. Frigault, L. Wang, A. Singhal, and S. Jajodia, “Measuring network
security using dynamic bayesian network,” in Proceedings of 4th ACM
QoP, 2008.

D. Balzarotti, M. Monga, and S. Sicari, “Assessing the risk of using
vulnerable components,” in Proceedings of the 1st ACM QoP, 2005.

J. Pamula, S. Jajodia, P. Ammann, and V. Swarup, “A weakest-adversary
security metric for network configuration security analysis,” in Proceed-
ings of the ACM QoP, pp. 31-38, 2006.

D. Leversage and E. Byres, “Estimating a system’s mean time-to-
compromise,” |EEE Security and Privacy, vol. 6, no. 1, pp. 52-60, 2008.
M. McQueen, T. McQueen, W. Boyer, and M. Chaffin, “Empirical
estimates and observations of Oday vulnerabilities,” Hawaii International
Conference on System Sciences, vol. 0, pp. 1-12, 2009.

K. Ingols, M. Chu, R. Lippmann, S. Webster, and S. Boyer, “Modeling
modern network attacks and countermeasures using attack graphs,” in
Proceedings of ACSAC' 09, pp. 117-126, 2009.

15

