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Abstract—The dynamicity and complexity of clouds highlight
the importance of automated root cause analysis solutions for
explaining what might have caused a security incident. Most ex-
isting works focus on either locating malfunctioning clouds com-
ponents, e.g., switches, or tracing changes at lower abstraction
levels, e.g., system calls. On the other hand, a management-level
solution can provide a big picture about the root cause in a more
scalable manner. In this paper, we propose DOMINOCATCHER, a
novel provenance-based solution for explaining the root cause of
security incidents in terms of management operations in clouds.
Specifically, we first define our provenance model to capture
the interdependencies between cloud management operations,
virtual resources and inputs. Based on this model, we design
a framework to intercept cloud management operations and
to extract and prune provenance metadata. We implement
DOMINOCATCHER on OpenStack platform as an attached mid-
dleware and validate its effectiveness using security incidents
based on real-world attacks. We also evaluate the performance
through experiments on our testbed, and the results demonstrate
that DOMINOCATCHER incurs insignificant overhead and is
scalable for clouds.

I. INTRODUCTION

Cloud computing has been widely adopted to provide
users the ability to self-provision resources while optimally
sharing the underlying physical infrastructure. However, the
self-service and multi-tenancy nature of clouds also leads to
a higher complexity and greater chances of misconfigura-
tions [5], [17], [35], which may complicate many security
issues in clouds. In particular, explaining what may have
caused a security incident, i.e., the root cause analysis, be-
comes far more challenging [6]. A manual approach to root
cause analysis is typically impractical considering the sheer
size of clouds, and automated solutions become essential
for understanding, debugging, and preventing security attacks
exploiting either vulnerabilities or misconfigurations in clouds.

There exist root cause analysis solutions [6], [23], [29] for
identifying failed components leading to security alarms in
clouds, although they do not explicitly pinpoint the configu-
ration changes causing the failures. Other existing solutions
focus on explaining system behaviours through provenance

analysis, i.e., tracing when and how data objects are created
and transformed. However, since most existing provenance so-
lutions work at a low abstraction level, e.g., system calls [11],
[25], [26], [34], they become insufficient in the context of
clouds, as such solutions would generate a prohibitive amount
of provenance metadata while not providing a big picture
about the root cause. In the following, we present a motivating
example to further highlight the need for provenance analysis
in clouds and the limitations of existing solutions.
Motivating Example. Figure 1 depicts the challenge faced
by an administrator after the detection of a data leakage from
VM A to VM Mal in the cloud virtual infrastructure (shown
at the top of the figure), i.e., he/she would have to inspect a
large amount of log entries from various services of OpenStack
(shown in the middle of the figure) in an attempt to understand
the attack scenario (shown at the bottom).

• An attacker from TenantB creates a port (PortMal) on a
router belonging to TenantA by exploiting vulnerability
OSSA-2014-0081.

• He/She then creates a VM attached to that port while
exploiting another vulnerability (OSSA-2015-0182) to
bypass anti-spoofing rules for this VM in order to launch
DHCP spoofing attack to impersonate a DNS server.

• He/She now can intercept TanantA’s traffic from VM A
destined to VM B through Subnet1, Router1 and Subnet2.

Pinpointing such attack steps and correlating them based
on their interdependencies can be a daunting task if done
manually, e.g., at first glance there may not be any apparent
link between the VM A creation and the VM Mal attachment
to PortMal. On the other hand, traditional provenance-based
solutions do not directly provide such a big picture, as they
typically focus on low-level details (e.g., system calls) of
individual components (e.g., an OS). Additionally, interpreting
and correlating such low-level results in a cloud would be
prohibitive considering its sheer scale.

1https://security.openstack.org/ossa/OSSA-2014-008
2https://security.openstack.org/ossa/OSSA-2015-018



Fig. 1: An example of data leakage in clouds (top), logs of
various OpenStack services (middle), and the challenge of
identifying problematic management operations (bottom).

To address those challenges, we propose in this paper
DOMINOCATCHER, a scalable provenance-based solution for
forensic analysis in clouds. Our key idea is to lift the
provenance analyses to the cloud management-level, which
enables tracing cloud infrastructure configuration changes and
identifying the ones causing attacks. Specifically, we first
design a provenance model to encode the interdependencies
between management operations, virtual resources and inputs
in clouds. We also propose a middleware-based framework
to capture provenance metadata from different cloud services
and construct the provenance graph according to our model to
support forensic analysis. Finally, we implement and experi-
mentally evaluate a prototype of DOMINOCATCHER on a real
OpenStack cloud testbed.

In summary, our main contributions are as follows.
• To the best of our knowledge, this is the first provenance

solution focusing on management operations of cloud
infrastructures. Compared to existing provenance-based
solutions, our provenance model is defined at a higher
abstraction level, and therefore, can provide a big picture
about cloud configuration changes with increased inter-
pretability that facilitates subsequent analyses.

• In lifting provenance analysis to management-level, we
propose several novel mechanisms as follows. First, our
middleware-based solution can allow for incremental
provenance graph construction, while requiring less in-
strumentation compared to existing solutions. Moreover,
our user-oriented pruning techniques can enable different
cloud tenants to customize their analysis of provenance
data and to facilitate their different needs in terms of
forensic analyses, security assumptions and user prefer-
ences.

• Our evaluation results show that DOMINOCATCHER can
provide a scalable tool for diagnosing the root cause of

security incidents in cloud infrastructures with insignifi-
cant performance and storage overhead.

The remainder of this paper is organized as follows: Sec-
tion II defines our provenance model and Section III describes
our methodology. Section IV details our implementation and
Section V presents evaluation results. We review related work
in Section VI and conclude the paper in Section VII.

II. CLOUD MANAGEMENT PROVENANCE MODEL

We provide a threat model and some background on cloud
virtual infrastructures and management operations. We then
define our management-level provenance model.

A. Threat Model and Assumptions

Our in-scope threats include both external attackers who
exploit existing vulnerabilities in the cloud infrastructure man-
agement systems, and insiders, such as cloud users and tenant
administrators, who make the state of the cloud infrastructure
exploitable either through mistakes or by malicious intentions.
We limit our scope to attacks that involve some operations
directed through the cloud management interfaces (e.g., com-
mand line and dashboard). We assume the cloud infrastructure
management system, the provenance building mechanism and
the provenance storage are all protected with existing tech-
niques such as remote attestation [12], [30], hash-chain-based
provenance storage protection [8] or type enforcement [2].

Out-of-scope threats include attacks that either involve no
management operations or can completely bypass the cloud
management interfaces, attackers who can temper with (either
through attacks or by using insider privileges) the cloud in-
frastructure management system (e.g., breaching the integrity
of the API calls) or the provenance solution itself. Finally,
although our provenance results may subsequently lead to the
discovery of existing vulnerabilities or misconfigurations, our
focus is not on vulnerability analysis, intrusion detection, or
configuration verification, and our solution is expected to work
in tandem with those solutions.

B. Background

Figure 2 shows an example cloud virtual infrastructure,
with cloud tenants provisioning and managing their virtual
resources (e.g., VMs and virtual subnets3) through API man-
agement interfaces (without loss of generality, our running ex-
ample will focus on virtual network-related security incidents).
Cloud Virtual Infrastructure. As shown in Figure 2, in
the cloud virtual infrastructure, routers interconnect differ-
ent subnets to route intra-tenant traffic (e.g., between Sub-
net1 and Subnet2), and they also route inter-tenant traffic
through external networks. A subnet (e.g., Subnet1) is as-
sociated with a CIDR (e.g., 10.0.0.0/24) and upon tenants’
Attach-Subnet-to-Router request, it can be attached
to a router through an interface, e.g., IF1. Once a tenant
requests for creating a VM, e.g., VM A, it is attached to a
virtual port, e.g., PortA. Ports can be created in subnets and

3Different cloud platforms may use different terms for the same concept.



Fig. 2: Example of a cloud virtual infrastructure showing
the interdependencies between virtual resources introduced by
management operations.

each port is subsequently allocated with an IP address chosen
from that subnet’s address range. Moreover, ports are attached
with one or several security groups, which are the placeholders
of access rules specifying the allowed ingress/egress traffic
from/to VMs of other groups. Once a tenant requests for
attaching a VM to a security group, the iptable of that VM is
updated with the VMs’ IP addresses from/to which traffic is
allowed according to the newly attached security group.

Interdependencies. From the above description about how
API calls may affect cloud infrastructures, we can see that
there may exist interdependencies between different cloud
virtual resources that are introduced by management op-
erations. For instance, the Attach-Subnet-to-Router
management operation introduces an interdependency between
a router and its attached subnets by adding the attached
subnets’ addresses to the router’s routing table, and the
Add-Security-Group management operation introduces
an interdependency between the VMs attached to different
security groups. To capture such interdependencies, we define
our provenance model in the following.

C. Management-Level Provenance Model

In general, provenance usually refers to a technique that
captures the information flow between sources and sinks [11].
In the context of cloud virtual infrastructures, we identify
as sinks the management operations (e.g., Create-VM and
Update-port) that lead to changing the configuration and
state of some virtual resources (e.g., virtual machines and
ports), which we identify as sources.

To represent our provenance model, we leverage W3C
PROV-DM [4]. According to this specification, the provenance
concept is generally visualized using a directed graph, namely
provenance graph, in which nodes are categorized into three
main types: entities, activities, and agents, where entities
represent data objects, activities represent transformations on
those objects and agents represent software, persons or orga-
nizations on whose behalf activities are requested. Relations
are defined between nodes to describe their interdependencies,
e.g., an entity WasGeneratedBy an activity, an activity Used
an entity, or an activity WasAssociatedWith an agent.

To define our provenance model based on PROV-DM, we
map the most common concepts in cloud virtual infrastructure
management to this specification. Specifically, a summary
of our provenance model is shown in Table I. Subtypes
are added to refine the classification of PROV-DM based
on our needs. To illustrate our model, Figure 3 shows an
excerpt of the provenance graph describing the management
operations involved in our motivating example, as detailed in
the following.

Entities. As explained in Table I, entity vertices (shown as
ovals in Figure 3) represent states of cloud virtual infrastruc-
ture resources, their configuration or inputs (e.g., a virtual
router, security group, VM, etc.). For instance, a state of a
router can be associated with the addresses of its connected
networks, while a VM state can be either running or down.
We use node versioning, which is the most common cycle
removal technique in the provenance literature [21], [25],
[26], in order to reduce the subsequent analyses overhead.
Specifically, a new node is created at each change occurrence
of its corresponding resource, representing a new version of
the resource4. For example, as it is shown in Figure 3, a new
node representing an updated state of Router1 (i.e., the node
〈Router1, Version1〉) is created when it is attached to Subnet1,
which essentially represents the updated routing table. Each
entity node is assigned with a label describing its subtype
(e.g., VM, Port, etc.). Moreover, entity nodes consist of a set
of attributes for storing a unique ID assigned by the cloud to
their resources, nodes’ creation time, etc. Other attributes, such
as attached networks for virtual routers or running/stopped for
VMs, may also be assigned when needed.

Activities. Activity vertices (shown as rectangles in Figure 3)
represent management API calls made to either change the
state of resources (e.g., Start-VM) or to mange their life-
cycle (e.g., Create-VM). The management API calls can be
made either directly by tenants or as the result of another
operation request. For example, in OpenStack, once a tenant
requests for creating a VM in a network, his/her request is
received by the compute service, which subsequently makes
another request to the networking service for binding a port
in the specified network to the created VM. In such a case,
we consider those two API calls as separate activities. We
assign each activity node a label describing its corresponding
operation type, e.g., Create-VM. Moreover, each activity
node has several attributes, including a unique request ID
assigned by the cloud management system to its corresponding
API call, the time that the request has been issued, etc.

Agents. Agent vertices (shown as diamonds in Figure 3)
correspond to the identity of the tenant admins or users
interacting with management API interfaces to provision or
manage their resources. Agents are identified using the unique
ID of tenants or users.

4Although node versioning naturally causes an increase in the size of the
provenance graph, we will show that the size of our provenance graph is
sufficiently scalable in Section V.
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Fig. 3: The provenance graph describing the main management operations and virtual resources related to the attack in the
motivating example (some edges and nodes are omitted for the sake of readability).

TABLE I: Mapping of the common concepts in cloud virtual infrastructures to the PROV-DM Model.

Cloud Concept Description PROV Model Subtype
Cloud Tenant A group of users owning an isolated set of virtual resources. Agent Tenant Admin, other tenants
Cloud User Customer of the cloud infrastructure belonging to a tenant with specific privileges

to provision cloud resources.
Agent Admin user of a tenant, other users.

Operation (lifecycle-related) Management API calls for deploying, deleting, or updating cloud virtual re-
sources.

Activity Create-VM, Update-Port-Device-
Owner, Update-VLAN-ID, etc

Operation (state-related) Management API calls for performing actions on virtual resources. Activity Start VM, Resize VM, Change VM
Password, etc.

Resource The states of a virtual infrastructure resource. For example, a VM is run-
ning/stopped/paused.

Entity VMs, virtual ports, virtual Subnets,
etc.

Resource Configuration The state of a virtual infrastructure configuration, e.g., configuration state of the
virtual hardware for VMs, network access rules, etc.

Entity Security groups, Flavors, etc.

Input for changing configurations An input data causing a change to the configuration state. Entity Security group rules, etc.

III. THE METHODOLOGY

We first provide an overview of our methodology, and then
detail the provenance construction and forensic analysis stages.

A. Overview
An overview of the DOMINOCATCHER framework is shown

in Figure 4. DOMINOCATCHER works in two main stages,
i.e., provenance construction (represented as solid line ar-
rows) and offline forensics analysis (dashed line arrows).
First, DOMINOCATCHER intercepts tenants’ management API
calls at runtime to incrementally construct the provenance
graph. During provenance construction, DOMINOCATCHER
intercepts and processes each API call to construct the cor-
responding subgraph and then appends it to the rest of the
provenance graph in the database. Once a threat is detected, the
investigator can trigger the DOMINOCATCHER offline forensic
analysis capabilities to perform an algorithmic pruning on the
provenance graph in order to narrow down the cause of the
threat. We detail those two stages in the following.
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Fig. 4: DOMINOCATCHER highlevel overview.
B. Provenance Construction

Provenance construction consists of two main steps: data
collection and graph generation.

Data Collection. Existing provenance-based solutions mostly
perform data collection through log processing, event inter-
ception mechanisms via Linux Security Modules (LSM) [20],
or code instrumentation in other platforms. Specifically, these
interception mechanisms trace the interdependencies between
data objects [7], [25], [26] or application functions and vari-
ables [33], [34]. However, code instrumentation would be too
expensive and impractical in cloud infrastructures considering
their sheer scale and complexity. On the other hand, standard
cloud infrastructure logs may lack sufficient details for iden-
tifying the type of management operations and corresponding
resources required for provenance metadata (e.g., different
types of operations may appear to be identical in the logs [18]).

To address those limitations, we design our event intercep-
tion mechanism as a middleware [14], [31] to intercept the
API calls. This approach allows us to trace more detailed in-
formation about configuration changes (than what is included
in the logs), while avoiding the expensive instrumentation
and decoupling the provenance system from the infrastructure
for more flexible deployment. The intercepted API calls are
processed by DOMINOCATCHER according to rules built based
on the cloud API design. These rules are used to parse the API
calls, identify the type of management operations, determine
the affected virtual resources and the user identity behind the
API request. More details on parsing the intercepted requests
and retrieving their parameters will be provided in Section IV.
Graph Generation. After data collection, DOMINOCATCHER
converts the extracted information into provenance metadata
as nodes and edges, and appends them to the provenance graph
stored in the database. Specifically, it first creates a new node
for each affected virtual resource and a node for the requested
operation. Next, it creates relations such as a WasGeneratedBy



edge from each resource node to the operation node, or a Used
edge from the operation node to each of the existing nodes in
the provenance graph that represents the latest version of an
affected resource, which is identified through its unique ID
and the previous versions’ timestamps.

For example, in Figure 3, DOMINOCATCHER creates a
WasGeneratedBy edge from the node 〈Router1, Version1〉
(representing its state after Subnet1’s attachment), to Attach-
Subnet-to-Router and a Used edge from Attach-Subnet-to-
Router to the node 〈Router1, Version0〉, representing the previ-
ous state of Router1. Furthermore, DOMINOCATCHER creates
a WasAssociatedWith edge from the operation node (e.g.,
Create-Router) to the node representing the cloud user/tenant
requesting that operation (e.g., TenantA).

C. Forensic Analysis

To explain what might have led to attacks in the cloud
virtual infrastructure, analysts could perform forensic analyses
on the provenance graph constructed by DOMINOCATCHER
prior to the time of threat detection. To this end, we can
leverage existing threat detection mechanisms for monitoring
the infrastructure and the deployed VMs. For instance, we
can rely on three main types of detection methods: VM-
level monitoring [3] (e.g., intrusion detection tools), cloud
virtual infrastructure policy compliance [24] and cross-layer
consistency verification tools [15].

In performing forensic analyses on the provenance graph
constructed by DOMINOCATCHER, analysts may face two
challenges. First, the provenance graph may be too large
for human interpretation as it might include many benign
or irrelevant operations. Second, the multi-tenancy nature
of clouds means the analysts from different tenants may
have vastly different needs and preferences in terms of their
objectives of forensic analyses and security assumptions. To
address those issues, we propose two user-oriented pruning
mechanisms to automatically identify and remove benign or
irrelevant information from the provenance graph. The analysts
could narrow down the scope of their forensic analyses by
triggering the pruning process and selecting the proper pruning
mechanisms based on their needs.

Specifically, we propose two user-oriented pruning schemes
in the context of cloud virtual infrastructures, namely disjoint
subgraph pruning and context-based pruning (we can addi-
tionally apply other pruning approaches, e.g., [7], [9], [10]).
Disjoint Subgraph Pruning. This pruning mechanism
basically finds and removes all nodes in the provenance
graph that are disconnected from the subgraph including
the node corresponding to the target resource (i.e., the
resource on which a threat is detected). Specifically,
DOMINOCATCHER starts from the last version of the
breached resource node, and follows all paths of the type
Resource1-(Used/WasGeneratedBy)-ManagementOperation-
(WasGeneratedBy/Used)-Resource2. An example provenance
graph with this pruning mechanism applied is depicted in
Figure 5. In the figure, starting from the starred VMA node,
we can find the Add-Security-Group node, which used the
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Fig. 5: Example of pruning through finding the provenance
graph nodes disjointed from the target VM (VMA) and unre-
lated nodes according to the security incident context.

previous version of VMA as well as the new version of
SecurityGroupA. We further follow the operations affected
VMA earlier in the provenance graph, which leads us to the
SubnetA node through the WasGeneratedBy edge from the
Create-VM node. We also find the Attach-Subnet-to-Router
node that used SubnetA and generated a new version
of Router1. Following this process, we can find all the
operations and resources that have affected the state of the
target resource, VMA, as well as the operations and resources
which are dependent on the changes previously made to
VMA. On the other hand, the absence of any path between
a group of nodes and the target resource implies the lack of
interdependencies and thus the former may be pruned. For
example, in Figure 5, having detected an attack on VMA,
an analyst may trigger this pruning mechanism to prune the
disjoint subgraph, shown inside the dashed contour in red,
e.g., SubnetC, Router2 and the operations affecting them.

Context-Based Pruning. This pruning mechanism removes
nodes that are not contextually dependent on the tar-
get resource according to the analyst’s provided criteria.
DOMINOCATCHER traverses paths in the provenance graph
while checking the specified constraints to identify a sub-
graph of resources and operations interdependent with the
target virtual resource. For example, a security incident re-
ported by a network-based IDS can lead the investigator to
prune entity and activity nodes that are related to virtual
resources not directly connected to the same virtual network
as the victim resources. Figure 5 shows an example of
context-based pruning in the context of VMA data leakage
incident. In this example, DOMINOCATCHER automatically
identifies resources connected to VMA’s network (SubnetA)
through the provenance graph based on the predefined op-
eration types that potentially create or update network con-
nectivity between virtual resources (e.g., Create-VM and



Attach-Subnet-to-Router). To this end, it starts from
the last version of VMA entity node in the provenance graph
and traverses paths until it either reaches activity nodes of the
operation types not included in the predefined set or not acting
on resources that are reachable from VMA nodes through any
traversed path. For instance, DOMINOCATCHER keeps VMB
and its attached subnet, SubnetB, in the provenance graph as
they are reachable from VMA through Attach-Subnet-to-Router
and Create-VM nodes on a traversed path. On the other hand,
although VMX, connected to SubnetX through Create-VM node
(in the green contour), is attached to the same security group
as VMA’s via Add-Security-Group node, it is pruned in this
step, as there is no Attach-Subnet-to-Router node on any path
between the network of VMX and VMA.

The pruning mechanisms allow the analyst to perform a
more focused forensic analysis towards the identification of
potential root causes. The following demonstrates how an
analyst may pinpoint the management operations that lead to
data leakage from VMA in our motivating example.

• The analyst may first trigger the disjoint graph pruning
mechanism to retrieve the subgraph with nodes reachable
from the VMA nodes through some paths.

• Next, through the context-based pruning, he/she can
retrieve all nodes corresponding to the resources that
became routable from VMA’s network before and after
VMA’s creation.

• Based on the pruned result (Figure 3), the analyst may
realize that VMA was created in a network that was
attached to a router, Router1, belonging to TenantA.

• Among the retrieved nodes, he/she can query to highlight
the nodes corresponding to the operations requested by
users of a tenant different from TenantA, and their af-
fected resources. He/She can see that a user of TenantB
created a port on the router attached to VMA’s network,
and later, that user updated the port’s device owner field
immediately after he/she created and attached a VM,
VMB, to that port.

• Seeing the creation of a port by a user on a different
tenant’s router, the analyst realizes about the existence of
an authorization failure. Furthermore, since the update of
the port’s device owner field was requested immediately
after its attachment to a created VM, it is likely that
OpenStack Neutron service treated it as a network-owned
port, and thus, assigned no anti-spoofing rules to the port.
Those lead the analyst to realize that there may exist
vulnerabilities in Neutron which allow users to bypass
proper authorization check and anti-spoofing rules to
access other tenants’ networks.

IV. IMPLEMENTATION

We implement DOMINOCATCHER based on an OpenStack
cloud testbed. We choose OpenStack due to its popularity,
e.g., as a platform supporting Network Function Virtualization
(NFV) for telecommunication service providers [27]. How-
ever, we note that only the data collection mechanism of
our approach is platform-specific, and our modular and less

invasive design makes our approach readily adaptable to other
platforms.

Fig. 6: DOMINOCATCHER architecture.
Figure 6 shows the architecture of DOMINOCATCHER. In

the following, we detail the implementation and integration of
our approach in OpenStack.

Integration into OpenStack. In the following, we explain
the integration of DOMINOCATCHER into OpenStack and the
preprocessing required for the data collection.

1) DOMINOCATCHER as an OpenStack WSGI middleware.
To collect provenance metadata from the REST API calls
made to endpoint services (e.g., Nova and Neutron), we
implement our framework as a Python WSGI middleware
similar to existing works [14], [31], and install it in the
filter chain to those services. Figure 7a depicts an excerpt
of Neutron API configuration and its filter chain into
which DOMINOCATCHER is inserted. This configuration
is stored in the api-paste.ini file for each service.

[composite:neutronapi_v2_0]

use = call:neutron.auth:pipeline_factory

noauth = cors http_proxy_to_wsgi request_id catch_errors extensions 

DominoCatcher neutronapiapp_v2_0

keystone = cors http_proxy_to_wsgi request_id catch_errors authtoken 

keystonecontext DominoCatcher extensions neutronapiapp_v2_0

(a)

REQUEST_METHOD: �PUT✁

openstack.request_id: �✂✄☎dt✁

HTTP_X_PROJECT_ID: �fb5s✁

HTTP_X_USER_ID: ✆ax1h✝

PATH_INFO: �✞v2.0/ports/f91398✁

wsgi.input: �✟�port✁✠ ✟�device_owner✁✠ �network:--✁✡✡✁

(b)
Fig. 7: (a) OpenStack Neutron API configuration integrat-
ing DOMINOCATCHER as a middleware. (b) Example of
Update-Port API call parameters.

2) Preprocessing for Information Extraction. Our approach
enables users to focus provenance analysis on a set of
operations and resources as well as OpenStack services
which are specified to be related to the analyses. For
instance, the users can focus on the management oper-
ations that update network-related cloud configurations.
This is achieved through specifying parsing and operation
typing rules of the selected management operations to
extract the contextual information and to identify the type
of the requested operations at runtime. Figure 7b shows
selected fields of an example Update-Port API call.



In this example, the PATH-INFO is parsed to extract the
updated port. Also, the extracted fields of wsgi.input
(the request body content), METHOD and PATH-INFO
of the API call are matched against the typing rules
to determine that this request is issued to update port
‘f91398’ while changing its device owner field.

At the end of the preprocessing stage, DOMINOCATCHER is
ready to intercept management API calls, extract the affected
virtual resources and identify the requested operations’ type.

Runtime Provenance Construction. At runtime, API Re-
quests/Responses Interceptor intercepts the parameters of man-
agement API calls and passes them to Requests Processor,
which identifies the affected resources and the type of the
requested operations. If it identifies a request triggering the
creation of resources (e.g., Create-VM), it processes the
API response sent back from the endpoint services as well
to retrieve the created resource ID. Next, Provenance Builder
updates the provenance database implemented in Neo4j5

with the extracted information. We use py2neo6 library in
DOMINOCATCHER middleware as an interface between the
middleware python script and Cypher language7 to interact
with the database.

Offline Forensic Analysis Module. To facilitate the analyses
after the detection of a threat, the analyst selects and initializes
selected pruning mechanisms (detailed in Section III) through
DOMINOCATCHER command line interface. For instance, the
analyst can initiate the pruning script with the parameters
reported about the alert (e.g., time of the detection, the target
VM ID, etc.) and a beginning time to further limit the analyses
on the constructed graph.

V. EVALUATION

In this section, we evaluate DOMINOCATCHER based on
three criteria: (1) Effectiveness in reconstructing the operations
sequences that led to the attack; (2) Runtime performance
overhead; (3) Storage overhead. We conduct our experiments
based on OpenStack Rocky8. Our cloud testbed includes one
controller node and up to 80 compute nodes, each with 8 CPUs
and 12 GB RAM running Ubuntu 16.04 server.

A. Effectiveness

To evaluate the effectiveness of our approach, we repro-
duce in our testbed 8 attack scenarios that involve cloud
virtual infrastructure misconfigurations. Most of these attacks
are discussed in existing works [5], [15], [17], [31], [35].
Table II summarizes these attack scenarios and the most
relevant operation types according to the results obtained after
the DOMINOCATCHER pruning process. In the following, we
detail how a cloud admin can benefit from DOMINOCATCHER
for the case of port scanning threat (other cases are omitted
due to page limitations).

5https://neo4j.com
6https://py2neo.org/v4
7https://neo4j.com/developer/cypher-query-language
8https://docs.openstack.org/rocky

Example. Consider a scenario where a user (UserA) receives
a port scanning alert on one of his/her running VMs, VMA,
which he/she previously connected to VMB’s network to use
the network service on VMB belonging to a trusted user,
UserB. Figure 8 shows the pruned provenance graph generated
by DOMINOCATCHER. For simplicity, we do not show the
attachment of VMB to SecurityGroupB and the rule allowing
traffic from this group to SecurityGroupA. The provenance
graph shows that VMA was created in SubnetA, and added to
SecurityGroupA before getting started. Moreover, SubnetA was
attached to Router1 through Attach-Subnet-to-Router
operation, and Router1 was connected to SubnetB, and in
SubnetB, UserMal created VM Mal, and added it to Security-
GroupX. We can also see the creation of SecuirtyGroupRuleX
which allowed ICMP traffic from the VMs of SecurityGroupX
to the VMs of SecurityGroupA, but this rule was deleted after
VMA got started and before VMA’s subnet (SubnetA) was
connected to SubnetB (through their attachment to Router1).
The fact that the attacker succeeded to send traffic of this
type in spite of the traced operations in the provenance graph,
makes the admin suspect that the problem was related to the
application of the security group rules. Therefore, the admin
examines the infrastructure and security groups, and discovers
a vulnerability in the networking service (CVE-2015-77139)
which does not allow the changes of security groups to be
reflected immediately on running VMs.

Fig. 8: Diagnosing the root cause of the port scanning threat
alert. We remove unnecessary information (e.g., version num-
bers) for readability purposes.

B. Performance

To evaluate the performance overhead of our approach, we
measure the latency in handling management requests (i.e.,

9https://security.openstack.org/ossa/OSSA-2015-021



TABLE II: Attack scenarios used to evaluate DOMINOCATCHER effectiveness.

Root Causes Detected Threat Most Relevant Management Operation Types Vulnerability
Malformed security group rule addition Cross-layer Incon-

sistency
Create-Security-Group, Create-Security-Group-Rule, Create-VM CVE-2019-9735

Overlapping security group rule addition Cross-layer Incon-
sistency

Create-Security-Group, Create-Security-Group-Rule, Create-VM CVE-2019-10876

Update of security group is not applied [17] Port Scanning Add-Security-Group, Start-VM, Delete-Security-Group-Rule CVE-2015-7713
Race condition to bypass anti-spoofing rules [31] Data Leakage Create-Port, Create-VM, Update-Port CVE-2015-5240
Entering a different tenant network by router cross-plugged [35] Data Leakage Create-Router, Create-Port, Create-VM CVE-2014-0056
Wrong VLAN ID [5] Data Leakage Create-Network, Update-Network Not specified
Failing to delete VMs in resize state Disk Consumption Create-VM, Resize-VM, Delete-VM CVE-2016-7498
Excessive VM creation on the same host [16] Disk Consumption Create-VM Not specified

the elapsed time between sending a request from manage-
ment interfaces and the completion of its execution). The
additional latency imposed by DOMINOCATCHER consists of
the time required for data collection as well as generating
the provenance graph incrementally. We note that the time
required for the communication10 between DOMINOCATCHER
and Neo4j server for provenance construction is included in
our measurements. Our results are measured in more than 50
trials and in three different cloud sizes: 600, 1800 and 3000
VMs with respectively 43069, 64689 and 107936 graph nodes
for each cloud size. Figure 9 shows a comparison between
the latency of management operations execution (with and
without DOMINOCATCHER performing runtime provenance
construction) in different cloud sizes. As it is depicted, the
provenance construction delay increases with the size of the
cloud, which can be justified by their corresponding greater
graph size and the elapsed time required for finding the parents
of the newly created entity nodes. The total overhead in the
cloud with 600, 1800 and 3000 VMs remains around %2.1,
%2.5 and %4.1 respectively in more than half of the cases.
Those results confirm that our solution is reasonably scalable
for clouds.

C. Storage Overhead
We measure the storage cost of DOMINOCATCHER, which

is important for the providers to allocate the required storage
resources for supporting DOMINOCATCHER. Our results are
depicted in Figure 9d. As it is shown, for the provenance
graph constructed with 120,000 operations, only 80-megabyte
storage is needed. This number of operations is much higher
than the number of configuration API calls issued in one day
in a real enterprise cloud reported in [35], which indicates the
storage cost of DOMINOCATHCER is acceptable.

VI. RELATED WORK

Provenance-based security solutions have been extensively
explored in [7], [11], [25], [26]. Many of these approaches
are based on tracing system transformations through low-level
system calls. For example, King et al. [11] leverage data prove-
nance to explain security incidents by tracing back related
events and system components in Unix-like operating systems.
To improve the provenance capture mechanism, the authors
in [7], [25], [26] build provenance graph based on the informa-
tion captured by Linux Security Module hooks. Hi-Fi [28] uti-
lizes provenance on kernel-level to monitor malicious behavior

10https://neo4j.com/docs/driver-manual/current/client-applications

within a compromised system, while LPM [2] uses provenance
DAGs to ensure authenticated communications. To increase
the efficiency of online analyses, CamQuery [26] traces both
userspace and in-kernel executions. HOLMES [19] provides
a summarized explanation of the attacker’s actions based on
low-level system calls through removing provenance graph
nodes and edges unrelated to attack campaigns. Although most
of these solutions can be extended to clouds, in contrast to
our work, they cannot directly provide a big picture about
the root cause of security incidents, and they also lack the
interpretability and scalability of our approach.

Other recent efforts [32]–[34], [36] adapt provenance analy-
sis to different domains. ProvThings [34] proposes a platform-
centric provenance-based approach for auditing the Internet
of Things (IoT) applications cross different devices. In SDN
environments, FORENGUARD [33] provides flow-level foren-
sics and ProvSDN [32] monitors the access to sensitive data
for unprivileged applications through privileged ones. Wu et
al. [36] define negative provenance to explain the absence
of events in distributed systems. Unlike our work, none
of these solutions specifically focus on cloud infrastructure
management systems.

There exist only limited efforts on applying provenance
analysis to cloud virtual infrastructures. Lu et al. [13] propose
a forensics schema to investigate the data access and Bates
et al. [1] propose to use provenance-based access control
mechanism to ensure cloud storage security. The authors
in [22], propose a tenant-aware provenance-based solution to
enhance OpenStack access control mechanism. In contrast, our
approach leverages the provenance concept to trace informa-
tion flow between virtual resources through management API
calls, which allows it to be used for monitoring a wider range
of changes in cloud infrastructure systems.

VII. CONCLUSION

In this paper, we presented DOMINOCATCHER, the
first management-level provenance solution for clouds.
DOMINOCATCHER leveraged data provenance concept to find
the management operations leading to attacks in cloud vir-
tual infrastructures and provided efficient pruning mecha-
nisms for users to pinpoint the root causes. We integrated
DOMINOCATCHER to OpenStack and demonstrated the effi-
cacy of our approach based on real attack scenarios. Moreover,
our experiments on performance and storage cost showed the
applicability of our approach with insignificant overhead. As
future work, we plan to combine our framework with low-level



(a) (b) (c) (d)
Fig. 9: Average latency in clouds with 600 (a), 1800 (b) and 3000 VMs (c). Provenance storage growth (d).

provenance-based techniques to cover potential gaps between
operational models and actual implementations in clouds (e.g.,
to trace changes bypassing API interfaces). Furthermore, we
will use machine learning techniques to further facilitate the
identification of operations responsible for the detected attacks.
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