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Abstract—The fifth-generation (5G) mobile telecom network
has been garnering interest in both academia and industry,
with better flexibility and higher performance compared to
previous generations. Along with functionality improvements,
new attack vectors also made way. Network operators and
regulatory organizations wish to have a more precise idea about
the security posture of 5G environments. Meanwhile, various
security metrics for IT environments have been around and
attracted the community’s attention. However, 5G-specific factors
are less taken into consideration.

This paper considers such 5G-specific factors to identify
potential gaps if existing security metrics are to be applied to
the 5G environments. In light of the layered nature and multi-
ownership, the paper proposes a new approach to the modular
computation of security metrics based on cross-layer projection
as a means of information sharing between layers. Finally, the
proposed approach is evaluated through simulation.

Index Terms—Security Metrics, Network Function Virtualiza-
tion, 5G, Attack Graph, Cloud

I. INTRODUCTION

Security controls, e.g., firewalls and IDS, have been widely
adopted by organizations and government agencies to protect
their computing infrastructures. In addition to their perfor-
mance, e.g., CPU consumption and detection rate, the effec-
tiveness of security controls is of utmost importance, to answer
the question of “whether or how much a security solution
can improve the level of security”. In the literature, security
metrics [1], [2], [3] are used to calculate an overall risk level of
the infrastructure/network that can facilitate decision making
as to what can be done to improve security. Especially, in
a large system, such as telecom networks, proper security
metrics could both serve as guidelines for decision makers to
improve security and help users/customers better understand
security postures of their deployments.

More specifically, 5G brings a whole new template to
the table. On one hand, the 5G environment demonstrates a
dynamic nature, thanks to technologies like network slicing [4]
and multi-access edge computing (MEC) [5], which allow for
on-demand and dynamic allocation of resources. Also, the
5G ecosystem has been turned into a multi-party play, to a
greater extent compared to its previous generations, i.e., we
have multiple stakeholders sharing the platform and resources,
sometimes isolated from each other for privacy and security.
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Fig. 1: An overview of the 5G environments

The flexibility and platform sharing of 5G environments are
achieved by splitting the application logic from the infrastruc-
ture through Network Function Virtualization (NFV) [6] and
Software-defined Network (SDN) [7]. 5G with NFV brings the
cloud and virtualization to the traditional infrastructure where
the network operator owns the whole stack. Nowadays, there is
the option for the network operator to deploy virtual network
functions (VNFs) on the hardware infrastructure of the cloud
service providers (CSPs). Also, virtual network operators can
rent the telecom infrastructure from network operators and
provide service to end users. These new phenomena potentially
pose challenges to the applicability of current security metrics.
Motivation. Typically, a security metric concerns identifying
an aspect of the computing environment to measure, e.g.,
software, process or people [8], and optionally aggregating
individual measures or measures of individual systems into
an overall metric. From a high-level overview of the 5G
environment as shown in Figure 1, one may have a few
intuitive questions in mind when trying to apply security met-
rics: 1) The 5G core, MEC and RAN (radio-access network)
might belong to different stakeholders and access to each
other’s resources is not shared with trust. How is aggregation
performed horizontally? 2) The layered structure implies that
the relationship with a lower-layer party (e.g., infrastructure
provider) may have more complications than with peers (as in
a regular cloud environment). How can aggregation be done
vertically? 3) Even though one party can locally compute its
own metrics independently, how are other parties around it
taken into account, as they all affect this party’s security? The
subsequent discussions aim to shed light on answering these
questions and we will revisit this 5G overview.
Contributions.

2021 IEEE International Conference on Communications (ICC), author's copy



• We perform a gap analysis by examining existing security
metrics in the context of the 5G telecom environments.

• We propose a modular security metric model that specif-
ically addresses the multi-ownership of 5G. In particular,
our approaches are discussed in a 5G-specific setting.

• We also evaluate the proposed modular model with simu-
lated resources of varying characteristics and topologies.

II. SECURITY METRICS IN THE 5G/TELECOM CONTEXT

In this section, we try to identify factors that have been
under-considered in the previous work discussed in Section VI
and perform a gap analysis in the 5G/telecom context. Gaps
will be denoted as G1, G2 and so forth.

A. Assumptions
We base the discussion on the 5G stakeholders defined in

the 5G-PPP White Paper on the 5G architecture [9]. We also
make further assumptions as follows.

Hardware and software vendors are always trusted. Specif-
ically, we exclude supply chain attacks where hardware com-
ponents are shipped compromised or software is intentionally
developed to be buggy/malicious. In this paper, we do not
intend to discuss specific attacks, but instead only use potential
threats (e.g., zero-days) to analyze/adapt security metrics in the
5G context. As an example, an MEC application may be buggy
which allows a connected UE to compromise it. This is pos-
sible in reality but we do not refer to a specific vulnerability.

B. G1: A threat model shift
The current studies of security metrics usually consider

the owner of the whole infrastructure as trusted [10], e.g.,
the administrator of the cloud service can faithfully provide
data for computation and reliably preserve privacy for data
collected from tenants. However, the multi-ownership nature
of the 5G environment usually imposes more challenges on
such assumptions:

• The Service Customer (SC) can be malicious. For exam-
ple, a small IoT communication platform may misbehave
(before getting detected by the administration).

• The Service Provider can be curious.1 For the business
reputation, they may ensure a transaction’s integrity but
not its secrecy, e.g., not disclosing the fact that it is col-
lecting tenant transaction logs or not properly erasing ten-
ant secrets. Curious adversaries have been common [11],
which may significantly undermine privacy.

• Any party may unintentionally fail to take adequate
security measures. For example, the private key might be
distributed in the whole environment, more broadly than
necessary. Data sent to or received from such a party will
be insecure.

We thus need to re-examine current security metric studies,
traditional and cloud-based, with this shifted threat model: the
stakeholders of the environment with different interests might
be mutually dis-/semi-trusted.

1In the 5G-PPP architecture, this may include the Network Operator (NOP,
providing network services to SPs), the Virtualisation Infrastructure Service
Provider (VISP) and the Data Centre Service Provider (DCSP).

C. G2: Input collection barriers

As measuring security requires inputs from all involved
parties, data unavailability caused by isolation between parties
can pose challenges to security metric computation as well.
See Figure 2a.

Isolation has been a key approach to information system
security, which is the idea of preventing information from
flowing from one party to another. This ensures that unin-
tended parties cannot see or access unauthorized resources.
Mechanisms enabling isolation include primitive architectural
support such as the x86 protection rings (Ring 0 – Ring 3,
isolating userspace and kernelspace) and hypervisor (deemed
to be Ring -1), and the more recent trusted computing tech-
nologies like Intel SGX. We refer to isolation achieved with
such mechanisms as technical isolation.

Apart from technical isolation, organizations and individuals
also need to comply with business agreements, organizational
regulations and law. One example is the service level agree-
ment (SLA) between a tenant and a CSP. We term isolation
achieved by such factors as institutional isolation.

D. G3: Localized security metrics

In addition to holistic security metrics reflecting the security
level of the whole site, each stakeholder might seek to evaluate
the security level of their own environment independently.

For instance, a virtual operator may wonder the security
of its UDM (unified data management, similar to 4G’s HSS)
when deployed in a cloud environment and connected to an
operator’s service. In this case, security metrics concerning
resources of the cloud or the operator will not help. What is
different here is that the target is within the virtual operator’s
premises but attack paths leading to it may cross all other
parties of the whole site. Therefore, what is needed is a
localized security metric incorporating the influences of the
whole environment.

E. G4: Dynamicity and flexibility

Compared to previous generations, although the transition
is gradual, 5G demonstrates more dynamicity in resource
allocation and more flexibility in configuration. This poses
challenges to the static computation of security metrics, as
input collection and computation both cost. For instance,
in the case of network slicing, VM (VNF) instances are
spawned dynamically which affects the topology of the stat-
ically computed attack paths. If taking into account such
dynamicity stemming from different parties (e.g., unplanned or
unpredictable), it becomes more difficult for current security
metrics to reflect up-to-date situations.

III. WAYS FORWARD TO BRIDGE GAPS

Based on the gaps identified, in this section we explore
a few possible directions to address them. As shown in
Figure 1, the 5G telecom environments naturally demonstrate
a layered structure, from the physical resources, virtualized
infrastructure (the NFVI layer), virtual network functions (the
VNF layer), to network services (the orchestration layer). This
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Fig. 2: Isolation and cross-layer projection

layered structure has been one of the considerations in the
previous studies (e.g., [12]). We inherit this layered structure
as a foundation of our discussion.

A. Trustworthy input collection: G1

The threat model shift makes it hard to trust a potentially
malicious or curious third-party with access to one’s own
resources for input collection. On the other hand, self-reporting
can also be unfaithful, e.g., a dishonest provider may just
report incorrect software versions in his favor.

In this case, hardware assistance plays a more important
role when mutual trust is weakened, especially for more
privileged parties, such as cloud service providers, assuming
that hardware vendors still remain trusted.

There have been certain attempts to protect VNFs’ execution
and corresponding secrets with hardware security support [13],
[14], such as Intel SGX (unprivileged, no access to the system
environment). Making use of Intel TXT or AMD SVM/SEV
(privileged, capable of accessing the system environment) [15]
or TrustZone on ARM servers, we can enforce trustworthy
input collection by implementing the collection functions
within TXT or SVM, e.g., scanning for software versions.

B. Cross-layer projection: G2

To enable information sharing in the face of isolation, each
party can choose to preprocess the information by removing
or aggregating details but still preserving the semantics. For
instance, an infrastructure provider may expose meaningful se-
mantics for the guest, e.g., VM create, init, start and terminate,
instead of the actual operation logs. For attack graphs, a local
chunk of nodes and edges may be generated and computed for
a metric (e.g., the shorted path), which is then shared instead
of the actual attack graph.

As shown in Figure 2b, we define projection as such
aggregated or preprocessed sharing across layers, preserving
semantics for the receiving party. The principle of least expo-
sure, similar to least privilege, can be followed, i.e., depending
on how security metrics are computed, only the minimum
information enough for the computation is shared.
A key enabler: standardization. To ensure that projection is
performed in a consistent manner across layers, it is crucial
to specify what information should be collected, what kind of
preprocessing is allowed and what is eventually projected. Var-
ious industrial standards have covered related topics to some

extent. For example, in addition to SCAP (defined in NIST
IR 800-117), NIST SP 800-137 also involves a guideline to
collect information according to established security metrics.

Another important role that standardization plays is to
make security metrics comparable. As the main usefulness of
security metrics is to serve as a basis for comparison, it makes
no sense if different parties perform incompatible metrics, e.g.,
a 5 by party A cannot be compared with an 8 by party B.
Therefore, standardizing the security metrics is also necessary.

C. Modular security metric computation: G3

To satisfy the requirement for localized security metric
computation (G3), at least two goals need to be achieved: 1) A
local resource can be selected as the target for which security
metrics are computed, as if no other parties existed. 2) External
threats affecting the local resource should also be included.

We propose to modularize the computation by following the
natural boundaries of different owners. This way, the owner
can compute its local metrics independently, which achieves
the first goal. For the second, the modules can be further
aggregated through the cross-layer projection. See Section IV
for detailed discussion.

D. Incremental and iterative computation: G4

The modular model can also be applied to partially address
the dynamicity of the 5G environments (G4). When graph
modules belong to the same owner, some modules may be
more static and some others may be frequently updated (e.g.,
network slices). Incremental computation saves resources and
especially reduces response time if dynamic components intro-
duce changes. Only affected modules need to be recomputed.

As a by-product, the modular module also allows iterative
computation. This can address a large-scale environment. A
huge attack graph can be broken down this way into smaller
blocks, each calculated with intermediate values to be aggre-
gated in the next iteration. We leave the detailed discussion as
future work.

IV. MODULAR SECURITY METRICS

In this section, we demonstrate our approaches to modular
security metric computation based on the commonly-used
attack graph model [16]. Note that as we do not target
specific attacks, such attack graph actually becomes a resource
graph [17] (relying on zero-day vulnerabilities), which we still
refer to as attack graphs.
Attack paths. To facilitate discussion, we first examine how
an attacker can take multiple paths to compromise a targeted
resource in the 5G environment. These attack paths will form
the foundation of subsequent discussions. With the UDM con-
sidered as the attack target, three starting points are possible
(refer back to Figure 1):
• User equipment (UE). With the advent of edge computing,

a smart phone may interact with the access network for
application logic other than wireless communication. We
assume an MEC-hosted IoT application compromised by
the UE, which then further attacks its UALCMP (User



Application LifeCycle Management Proxy) located in the
core. If the UALCMP is co-located in the same host with
the target VNF, an attack path is formed.

• Physical access. Base stations (gNB for 5G) need to spread
geographically for signal coverage. Given the popularity of
pico cells and femtocells, an adversary has the chance to
physically compromise it [18] without needing to access the
operator’s protected premises. Taking advantage of the less
protected back-haul communication, various attack paths
may go to the core VNFs.

• Internet. Certain VNFs also have separate Internet access,
and as with any network-facing applications, open ports with
vulnerabilities can open the door for attacks.
The multi-ownership situation is demonstrated by the fol-

lowing parties: a virtual operator will be the subject here
owning certain 5G core functions. The RAN (with gNB1 and
gNB2) belongs to another network operator. Naturally, the
MEC platform may be owned by a different party.

Fig. 3: Modularized attack graph. Surrounded by dashed lines
are the modules (MEC, Cloud Provider and Virtual Operator).

Channels. 5G components are connected to each other via
various channels. That is also how attack paths can be formed.
For instance, the virtual operator’s AMF (Access and Mobility
Management Function) talks to the gNB via the N2 inter-
face [19] and a gNB communicates with another gNB via
the X2 interface [20].

Based on these attack paths, the constructed attack graph
is shown in Figure 3. Nodes in point brackets are pre-
or post-conditions, e.g., 〈root, gNB1 〉 means having the
root privilege on gNB1. Nodes in rectangles are exploits.
bridging pre-conditions and post-conditions. For instance,
〈N2, gNB1,AMF 〉

0.5
means by exploiting the N2 interface,

〈root, gNB1 〉 can lead to 〈root,AMF 〉 with the probability
of p() = 0.5. p() is assigned just to demonstrate calculation.

In addition to p(), P () is a cumulative probability of an
attacker following the attack paths and executing the exploit.
We calculate P () with the Bayesian conditional probability
using individual p()s, as is done by Frigault et al. [21]. In

parallel, we also consider the shortest path approach [22]
which reflects the least amount of effort an attacker can expend
to achieve the exploit.

Now our task is to enable the virtual operator
to compute P (〈root,UDM 〉) and the shortest path
Pathmin(〈root,UDM 〉) with influences projected from
other modules.
The border exploits. As each exploit node always involves
two conditions (in many cases on two different components),
on the ownership boundary, some exploits have one condition
pertaining to one party (e.g., gNB1 with the RAN) and one
condition to another (e.g., AMF with the virtual operator). We
term such exploits as border exploits.

We define the pre-conditions of the border exploit as exter-
nal conditions, and the post-conditions of the border exploit as
internal conditions. When the virtual operator is the subject,
external conditions are blue-boxed and internal conditions are
red-boxed. In the following, we explore how projection can be
performed between the two sets of conditions in three steps.
Step 1: Local graph. The virtual operator will first perform
the local computation by identifying all its internal conditions
on outbound channels (i.e., AMF, UPF and UDM in Figure 3).
Around the target UDM, a local attack graph is generated.
So the local metric of the UDM can be calculated with the
Bayesian network [21] as:

P (〈root,UDM 〉) = Bayesian(N)

where N stands for the local graph as the Bayesian network
starting from the internal conditions in red boxes. In this
example, P (〈root,UDM 〉) = 0.648 (conditional probability
table omitted here. See [21] for the calculation details).
Pathmin(〈root,UDM 〉) = 1, from 〈root,AMF 〉. Likewise,
each external party can define their border components as the
target (in blue boxes) and generate their attack graph.
Step 2: Static exit points. When it comes to projection
from external conditions to internal conditions, the channels in
between come to attention. A simple situation is static precon-
figured channels, such as between constantly-connected com-
ponents, or any channels both parties would like to hard-code.

We call such external conditions static exit points (in
gray boxes). In this case, the external conditions are simply
passed along via the static channels. From the RAN owner,
〈root, gNB1 〉 gets P (〈root, gNB1 〉) = p(vul1) = 0.08, and
its shortest path is 1.

Upon receipt of the external conditions, the border ex-
ploits can be reconstructed (0.5 and 0.4) as their post-
conditions are in the virtual operator’s premises. We
omit the calculation for the two other border exploits
〈N13,AUSF ,UDM 〉 and 〈control,SDNC ,UDM 〉. The up-
dated calculation with static exit point projection is:
Pstatic(〈root,UDM 〉) = Bayesian(Nstatic) = 0.11. The
corresponding Pathmin(〈root,UDM 〉) is still 1, due to the
influence by the AUSF.
Step 3: Probing dynamic exit points. In most cases, even
when the channels are known, what external components are



connected can be unpredictable or vary. An upstream TCP/IP
link can have dynamic hosts via DHCP, similar to network
slice instances spawned in real-time. Note that the virtual
operator may identify more channels than its actual internal
conditions without prior knowledge of other attack graph
modules. In such cases, we can dissociate the border exploits
from channels. This is demonstrated as dynamic exit points
(grayed dotted boxes) at the bottom of Figure 3.

Upon receipt of the external conditions, the virtual operator
can enumerate its channels and probe for choices that achieve
the optimum for the local attack graph. In this example, it
probes its multiple VNFs with P (〈root,VMn〉), e.g., AMF,
SMF, UPF and UDM. Note that it will not be able to
distinguish the placements 1©, 2©, 3© and 4©, even though
4© is the actual.

Eventually after the 3-step modular computation, the con-
solidated metric would be:

PConsolidated(〈root,UDM 〉) = max
i=1,2,3,...,n

(Pstatic,dynamic(i))

where Pstatic,dynamic(i) is calculated with Bayesian(Nstatic)
when combined with each probed placement (Ndynamic(i)).
For simplicity, we only calculate for VMn (excluding the
VIM), and the max of the 16 combinations for placing AMF,
UPF, SMF, and UDM on VMn: PConsolidated(〈root,UDM 〉)
= 0.122. Pathmin(〈root,UDM 〉) = 1.

V. SIMULATION AND DISCUSSION

To statistically and visually evaluate the effectiveness of
our modular model, we conduct simulations based on attack
graphs. We utilize the shortest path approach (denoted as “Se-
curity Score (S)”) as the security metric. All the simulations
have been conducted in a VM equipped with 7 vCPUs and
16GB RAM in a Python environment under Ubuntu 18.04.
We repeat each simulation 100 times and take the average.

In the first set of the simulation, we evaluate how the
modular model impacts the accuracy of the computed security
score with different graph generation parameters. The three
data sets we plot are the security scores computed for the same
target, based on: 1) The local attack graph generated from
resources the target’s owner has access to, denoted as “Local
only”. 2) The full attack graph for the whole environment,
assuming no input collection barriers. We refer to this set as the
“Ground Truth” for comparison. 3) Our modular computation
of the local graph with projected inputs from other attack
graphs, referred to as “Modular (our approach)”.

The attack graph generation parameters are: # of Modules
refers to the total number of attack graph modules, one of
which is selected as the local graph. Pserver is the probability
of any two servers being connected (we call the physi-
cal/virtual machines servers). Pcond means the probability of
any two conditions being connected. Maxcond means the
maximum number of conditions a server can have. #server/M

refers to the number of servers per module.
Interpretations of Set I results. In general, compared to the
green line at the bottom (the local only computation), the
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Fig. 4: Effects of modular attack graph computation.

modular enables a more accurate security evaluation, i.e., the
modular security score is much closer to the ground truth.
Figure 4a shows the experiments based on “safeguarded”
modules, i.e., modules being less exposed to the exit points.
From the results, our modular computation is very close to
the ground truth even when the number of modules reaches
100, each of which may represent a virtual operator (hence
we consider 100 as sufficiently large). This is mainly because
border exit points cause information loss between modules,
thus, less exposure to exit points means less information loss.
Figure 4b corresponds to exposed modules, i.e., modules con-
taining more border exploits. For the aforementioned reason,
our approach performs less well compared to the safeguarded
modules. Nonetheless, we still provide an approximated secu-
rity evaluation comparing to the local only, which does not
reflect the actual security level.

In the second set of the simulation, we focus on evaluating
the approximation ratio = SModular

SGroundTruth
when varying graph pa-

rameters. The approximation ratio (AR) indicates the deviation
from the ground truth; 1 means the same as ground truth and
0 means failure to reflect the actual security level.
Interpretations of Set II results. In Figure 4c the black line
(the line with triangular markers) is the baseline setup. We
increase each parameter (by ∼%50) to study how AR changes
when the scale of the 5G environment increases. Overall,
AR changes are very negligible (which is also reflected in
Figure 4d-top the line is almost flat) except when we increase
Pserver. This is mainly because Pserver directly contributes to
the connectivity complexity. When the attack graph complexity
increases, the aggregated local shortest path in each module
fails to accurately represent the shortest path in the entire
attack graph. On the other hand, other parameters are less
connectivity-related, e.g., Pcond and Maxcond tend to affect
the exploitability (probability). As we are taking the shortest



path (not the Bayesian probability), we are ignoring the
exploitability. Figure 4d takes another perspective to show
how Pcond and Pserver affect AR by plotting against the
probability. Coherent with our observations in Figure 4c, as
Pcond goes up, AR does not change much, while when Pserver

increases AR goes down significantly.

VI. RELATED WORK

Software vulnerabilities are commonly used as inputs to
evaluate the security level of a network/system. For example,
Singhal et al. [23] proposed a system where Common Vul-
nerability Score System (CVSS) scores are one of the inputs
taken for security metrics calculation. Contrary to the popular
perception that only vulnerabilities with high severity pose
danger to the system, the chaining of vulnerabilities, i.e., attack
path, can combine several low-severity vulnerabilities to create
greater damages. Wang et al. [24] demonstrated a probabilistic
security metric that joins all the vulnerabilities in the system
and gives a score in the form of probability, outlining which
path can be taken by an attacker. Jajodia et al. [25] proposed
a topological analysis on how several vulnerabilities can be
chained together to mount an exploit.

The studies of security metrics have also touched the cloud.
Caron et al. [26] proposed a security metric designed for cloud
environments and using this metric, came up with optimized
placements of VMs in line with user security requirements.
Torkura et al. [27] performed a quantitative analysis on how
security metrics could be used to improve cloud security, using
OpenStack as a case study. Alhebaishi et al. [10] modeled
cross-layer and co-residency attacks in the NFV stack and used
optimized VM placement to mitigate such attacks. To evaluate
multi-tenancy threats in the cloud, Madi et al. [28] introduced
multi-level distance metrics based on compute, physical and
network distances, taking into account the level of resource
sharing between tenants.
Summary. Different from the aforementioned, our work fo-
cuses on 5G-specific environments and proposes a modular
model capturing the gaps introduced by the new platform and
use cases. Note that this is orthogonal to existing security met-
rics work as we are proposing a new way of applying them.

VII. CONCLUDING REMARKS

We examined what is special about the more recent 5G
telecom environments in terms of applying existing security
metrics, and were able to identify four gaps at a high level.
Among corresponding potential solutions, in particular, we
propose a security metric model that allows for modular com-
putation with projected inputs, using 5G-specific examples.
The feasibility of our proposal has also been evaluated with
simulation. We believe that our exploration can cast light on
future research into making security metrics 5G-ready (or for
later generations).
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